Comparison between gradient based UCODE_2005 and the ensemble Kalman Filter for transient groundwater flow inverse modeling View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-03-20

AUTHORS

JuXiu Tong, Bill X. Hu, JinZhong Yang

ABSTRACT

Gradient based UCODE_2005 and data assimilation based on the Ensemble Kalman Filter (EnKF) are two different inverse methods. A synthetic two-dimensional flow case with four no-flow boundaries is used to compare the UCODE_2005 with the Ensemble Kalman Filter (EnKF) for their efficiency to inversely calculate and calibrate a hydraulic conductivity field based on hydraulic head data. A zonal, random heterogeneous conductivity field is calibrated by assimilating the time series of heads observed in monitoring wells. The study results indicate that the two inverse methods, UCODE_2005 and EnKF, could be used to calibrate the hydraulic conductivity field to a certain degree. More available observations and information about the conductivity field, more accurate inverse results will be obtained for the UCODE_2005. On the other hand, for a realistic zonal heterogeneous hydraulic conductivity field, EnKF can only efficiently determine the hydraulic conductivity field at the first several assimilated time steps. The results obtained by the UCODE_2005 look better than those by the EnKF. This is possibly due to the fact that the UCODE_2005 uses observed head data at every time step, while EnKF can only use observed heads at first several steps due to the filter divergence problem. More... »

PAGES

899-909

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11430-015-0235-1

DOI

http://dx.doi.org/10.1007/s11430-015-0235-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084031548


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Water Resources and Environment, China University of Geosciences, 100083, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.162107.3", 
          "name": [
            "Key Laboratory of Groundwater Cycle and Environment Evolution (China University of Geosciences), Ministry of Education, 100083, Beijing, China", 
            "School of Water Resources and Environment, China University of Geosciences, 100083, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tong", 
        "givenName": "JuXiu", 
        "id": "sg:person.010314752347.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010314752347.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Earth, Ocean and Atmospheric Science/Geological Sciences, Florida State University, 108 Carraway Building, 909 Antarctic Way, 32306, Tallahassee, Florida, USA", 
          "id": "http://www.grid.ac/institutes/grid.255986.5", 
          "name": [
            "Key Laboratory of Groundwater Cycle and Environment Evolution (China University of Geosciences), Ministry of Education, 100083, Beijing, China", 
            "School of Water Resources and Environment, China University of Geosciences, 100083, Beijing, China", 
            "Department of Earth, Ocean and Atmospheric Science/Geological Sciences, Florida State University, 108 Carraway Building, 909 Antarctic Way, 32306, Tallahassee, Florida, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Bill X.", 
        "id": "sg:person.012556140447.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012556140447.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China", 
          "id": "http://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "JinZhong", 
        "id": "sg:person.014731165631.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014731165631.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11430-010-4160-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010605385", 
          "https://doi.org/10.1007/s11430-010-4160-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-010-0392-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029308599", 
          "https://doi.org/10.1007/s00477-010-0392-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-008-0289-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029417657", 
          "https://doi.org/10.1007/s00477-008-0289-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11430-014-4964-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038848989", 
          "https://doi.org/10.1007/s11430-014-4964-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10236-003-0036-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053511041", 
          "https://doi.org/10.1007/s10236-003-0036-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11242-006-0011-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011330695", 
          "https://doi.org/10.1007/s11242-006-0011-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-03-20", 
    "datePublishedReg": "2017-03-20", 
    "description": "Gradient based UCODE_2005 and data assimilation based on the Ensemble Kalman Filter (EnKF) are two different inverse methods. A synthetic two-dimensional flow case with four no-flow boundaries is used to compare the UCODE_2005 with the Ensemble Kalman Filter (EnKF) for their efficiency to inversely calculate and calibrate a hydraulic conductivity field based on hydraulic head data. A zonal, random heterogeneous conductivity field is calibrated by assimilating the time series of heads observed in monitoring wells. The study results indicate that the two inverse methods, UCODE_2005 and EnKF, could be used to calibrate the hydraulic conductivity field to a certain degree. More available observations and information about the conductivity field, more accurate inverse results will be obtained for the UCODE_2005. On the other hand, for a realistic zonal heterogeneous hydraulic conductivity field, EnKF can only efficiently determine the hydraulic conductivity field at the first several assimilated time steps. The results obtained by the UCODE_2005 look better than those by the EnKF. This is possibly due to the fact that the UCODE_2005 uses observed head data at every time step, while EnKF can only use observed heads at first several steps due to the filter divergence problem.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11430-015-0235-1", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6978231", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7006875", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8231944", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1312375", 
        "issn": [
          "1674-7313", 
          "1869-1897"
        ], 
        "name": "Science China Earth Sciences", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "60"
      }
    ], 
    "keywords": [
      "hydraulic conductivity field", 
      "conductivity field", 
      "Kalman filter", 
      "ensemble Kalman filter", 
      "two-dimensional flow case", 
      "heterogeneous hydraulic conductivity fields", 
      "heterogeneous conductivity fields", 
      "inverse method", 
      "filter divergence problem", 
      "hydraulic head data", 
      "flow cases", 
      "head data", 
      "time step", 
      "transient groundwater", 
      "flow boundaries", 
      "observed heads", 
      "inverse modeling", 
      "EnKF", 
      "filter", 
      "divergence problem", 
      "data assimilation", 
      "field", 
      "gradient", 
      "inverse results", 
      "different inverse methods", 
      "available observations", 
      "modeling", 
      "efficiency", 
      "boundaries", 
      "time series", 
      "step", 
      "method", 
      "groundwater", 
      "results", 
      "certain degree", 
      "wells", 
      "study results", 
      "comparison", 
      "problem", 
      "data", 
      "observations", 
      "head", 
      "degree", 
      "series", 
      "hand", 
      "cases", 
      "information", 
      "fact", 
      "assimilation", 
      "random heterogeneous conductivity field", 
      "accurate inverse results", 
      "realistic zonal heterogeneous hydraulic conductivity field", 
      "zonal heterogeneous hydraulic conductivity field", 
      "observed head data"
    ], 
    "name": "Comparison between gradient based UCODE_2005 and the ensemble Kalman Filter for transient groundwater flow inverse modeling", 
    "pagination": "899-909", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084031548"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11430-015-0235-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11430-015-0235-1", 
      "https://app.dimensions.ai/details/publication/pub.1084031548"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_738.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11430-015-0235-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11430-015-0235-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11430-015-0235-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11430-015-0235-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11430-015-0235-1'


 

This table displays all metadata directly associated to this object as RDF triples.

165 TRIPLES      22 PREDICATES      85 URIs      71 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11430-015-0235-1 schema:about anzsrc-for:04
2 anzsrc-for:0406
3 schema:author Nc4c9875f2fda42b0bbcfe4b94f604b10
4 schema:citation sg:pub.10.1007/s00477-008-0289-4
5 sg:pub.10.1007/s00477-010-0392-1
6 sg:pub.10.1007/s10236-003-0036-9
7 sg:pub.10.1007/s11242-006-0011-2
8 sg:pub.10.1007/s11430-010-4160-3
9 sg:pub.10.1007/s11430-014-4964-7
10 schema:datePublished 2017-03-20
11 schema:datePublishedReg 2017-03-20
12 schema:description Gradient based UCODE_2005 and data assimilation based on the Ensemble Kalman Filter (EnKF) are two different inverse methods. A synthetic two-dimensional flow case with four no-flow boundaries is used to compare the UCODE_2005 with the Ensemble Kalman Filter (EnKF) for their efficiency to inversely calculate and calibrate a hydraulic conductivity field based on hydraulic head data. A zonal, random heterogeneous conductivity field is calibrated by assimilating the time series of heads observed in monitoring wells. The study results indicate that the two inverse methods, UCODE_2005 and EnKF, could be used to calibrate the hydraulic conductivity field to a certain degree. More available observations and information about the conductivity field, more accurate inverse results will be obtained for the UCODE_2005. On the other hand, for a realistic zonal heterogeneous hydraulic conductivity field, EnKF can only efficiently determine the hydraulic conductivity field at the first several assimilated time steps. The results obtained by the UCODE_2005 look better than those by the EnKF. This is possibly due to the fact that the UCODE_2005 uses observed head data at every time step, while EnKF can only use observed heads at first several steps due to the filter divergence problem.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf Na38fe0e66cdc4c1984fa1f795db32c6f
17 Nb49da49ba38b4934bd769304dc591818
18 sg:journal.1312375
19 schema:keywords EnKF
20 Kalman filter
21 accurate inverse results
22 assimilation
23 available observations
24 boundaries
25 cases
26 certain degree
27 comparison
28 conductivity field
29 data
30 data assimilation
31 degree
32 different inverse methods
33 divergence problem
34 efficiency
35 ensemble Kalman filter
36 fact
37 field
38 filter
39 filter divergence problem
40 flow boundaries
41 flow cases
42 gradient
43 groundwater
44 hand
45 head
46 head data
47 heterogeneous conductivity fields
48 heterogeneous hydraulic conductivity fields
49 hydraulic conductivity field
50 hydraulic head data
51 information
52 inverse method
53 inverse modeling
54 inverse results
55 method
56 modeling
57 observations
58 observed head data
59 observed heads
60 problem
61 random heterogeneous conductivity field
62 realistic zonal heterogeneous hydraulic conductivity field
63 results
64 series
65 step
66 study results
67 time series
68 time step
69 transient groundwater
70 two-dimensional flow case
71 wells
72 zonal heterogeneous hydraulic conductivity field
73 schema:name Comparison between gradient based UCODE_2005 and the ensemble Kalman Filter for transient groundwater flow inverse modeling
74 schema:pagination 899-909
75 schema:productId N38bfd148a24a40efbe5a372f4b7c38f4
76 N97a8e6a66aa446c8ab3c20e42965fb8f
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084031548
78 https://doi.org/10.1007/s11430-015-0235-1
79 schema:sdDatePublished 2021-11-01T18:30
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher N306c09b9498b4758b0b9764b1874bdd6
82 schema:url https://doi.org/10.1007/s11430-015-0235-1
83 sgo:license sg:explorer/license/
84 sgo:sdDataset articles
85 rdf:type schema:ScholarlyArticle
86 N06d313740e294b0196abb9e9174cf169 rdf:first sg:person.014731165631.01
87 rdf:rest rdf:nil
88 N306c09b9498b4758b0b9764b1874bdd6 schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 N38bfd148a24a40efbe5a372f4b7c38f4 schema:name doi
91 schema:value 10.1007/s11430-015-0235-1
92 rdf:type schema:PropertyValue
93 N7e73935361414bf6adb7819c4ac41932 rdf:first sg:person.012556140447.41
94 rdf:rest N06d313740e294b0196abb9e9174cf169
95 N97a8e6a66aa446c8ab3c20e42965fb8f schema:name dimensions_id
96 schema:value pub.1084031548
97 rdf:type schema:PropertyValue
98 Na38fe0e66cdc4c1984fa1f795db32c6f schema:issueNumber 5
99 rdf:type schema:PublicationIssue
100 Nb49da49ba38b4934bd769304dc591818 schema:volumeNumber 60
101 rdf:type schema:PublicationVolume
102 Nc4c9875f2fda42b0bbcfe4b94f604b10 rdf:first sg:person.010314752347.24
103 rdf:rest N7e73935361414bf6adb7819c4ac41932
104 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
105 schema:name Earth Sciences
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
108 schema:name Physical Geography and Environmental Geoscience
109 rdf:type schema:DefinedTerm
110 sg:grant.6978231 http://pending.schema.org/fundedItem sg:pub.10.1007/s11430-015-0235-1
111 rdf:type schema:MonetaryGrant
112 sg:grant.7006875 http://pending.schema.org/fundedItem sg:pub.10.1007/s11430-015-0235-1
113 rdf:type schema:MonetaryGrant
114 sg:grant.8231944 http://pending.schema.org/fundedItem sg:pub.10.1007/s11430-015-0235-1
115 rdf:type schema:MonetaryGrant
116 sg:journal.1312375 schema:issn 1674-7313
117 1869-1897
118 schema:name Science China Earth Sciences
119 schema:publisher Springer Nature
120 rdf:type schema:Periodical
121 sg:person.010314752347.24 schema:affiliation grid-institutes:grid.162107.3
122 schema:familyName Tong
123 schema:givenName JuXiu
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010314752347.24
125 rdf:type schema:Person
126 sg:person.012556140447.41 schema:affiliation grid-institutes:grid.255986.5
127 schema:familyName Hu
128 schema:givenName Bill X.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012556140447.41
130 rdf:type schema:Person
131 sg:person.014731165631.01 schema:affiliation grid-institutes:grid.49470.3e
132 schema:familyName Yang
133 schema:givenName JinZhong
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014731165631.01
135 rdf:type schema:Person
136 sg:pub.10.1007/s00477-008-0289-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029417657
137 https://doi.org/10.1007/s00477-008-0289-4
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s00477-010-0392-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029308599
140 https://doi.org/10.1007/s00477-010-0392-1
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s10236-003-0036-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053511041
143 https://doi.org/10.1007/s10236-003-0036-9
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s11242-006-0011-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011330695
146 https://doi.org/10.1007/s11242-006-0011-2
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s11430-010-4160-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010605385
149 https://doi.org/10.1007/s11430-010-4160-3
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s11430-014-4964-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038848989
152 https://doi.org/10.1007/s11430-014-4964-7
153 rdf:type schema:CreativeWork
154 grid-institutes:grid.162107.3 schema:alternateName School of Water Resources and Environment, China University of Geosciences, 100083, Beijing, China
155 schema:name Key Laboratory of Groundwater Cycle and Environment Evolution (China University of Geosciences), Ministry of Education, 100083, Beijing, China
156 School of Water Resources and Environment, China University of Geosciences, 100083, Beijing, China
157 rdf:type schema:Organization
158 grid-institutes:grid.255986.5 schema:alternateName Department of Earth, Ocean and Atmospheric Science/Geological Sciences, Florida State University, 108 Carraway Building, 909 Antarctic Way, 32306, Tallahassee, Florida, USA
159 schema:name Department of Earth, Ocean and Atmospheric Science/Geological Sciences, Florida State University, 108 Carraway Building, 909 Antarctic Way, 32306, Tallahassee, Florida, USA
160 Key Laboratory of Groundwater Cycle and Environment Evolution (China University of Geosciences), Ministry of Education, 100083, Beijing, China
161 School of Water Resources and Environment, China University of Geosciences, 100083, Beijing, China
162 rdf:type schema:Organization
163 grid-institutes:grid.49470.3e schema:alternateName State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China
164 schema:name State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China
165 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...