A method to estimate concentrations of surface-level particulate matter using satellite-based aerosol optical thickness View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-08

AUTHORS

JinHua Tao, MeiGen Zhang, LiangFu Chen, ZiFeng Wang, Lin Su, Cui Ge, Xiao Han, MingMin Zou

ABSTRACT

We propose a new method to estimate surface-level particulate matter (PM) concentrations by using satellite-retrieved Aerosol Optical Thickness (AOT). This method considers the distribution and variation of Planetary Boundary Layer (PBL) height and relative humidity (RH) at the regional scale. The method estimates surface-level particulate matter concentrations using the data simulated by an atmospheric boundary layer model RAMS and satellite-retrieved AOT. By incorporation MODIS AOT, PBL height and RH simulated by RAMS, this method is applied to estimate the surface-level PM2.5 concentrations in North China region. The result is evaluated by using 16 ground-based observations deployed in the research region, and the result shows a good agreement between estimated PM2.5 concentrations and observations, and the coefficient of determination R2 is 0.61 between the estimated PM2.5 concentrations and the observations. In addition, surface-level PM2.5 concentrations are also estimated by using MODIS AOT, ground-based LIDAR observations and RH measurements. A comparison between the two estimated PM2.5 concentrations shows that the new method proposed in this paper is better than the traditional method. The coefficient of determination R2 is improved from 0.32 to 0.62. More... »

PAGES

1422-1433

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11430-012-4503-3

DOI

http://dx.doi.org/10.1007/s11430-012-4503-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027180341


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0909", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geomatic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Remote Sensing Science", 
          "id": "https://www.grid.ac/institutes/grid.484663.b", 
          "name": [
            "State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China", 
            "State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University, 100101, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tao", 
        "givenName": "JinHua", 
        "id": "sg:person.015513554772.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015513554772.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Atmospheric Physics", 
          "id": "https://www.grid.ac/institutes/grid.424023.3", 
          "name": [
            "State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "MeiGen", 
        "id": "sg:person.01057333523.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057333523.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Remote Sensing Science", 
          "id": "https://www.grid.ac/institutes/grid.484663.b", 
          "name": [
            "State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University, 100101, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "LiangFu", 
        "id": "sg:person.016513234112.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016513234112.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Remote Sensing Science", 
          "id": "https://www.grid.ac/institutes/grid.484663.b", 
          "name": [
            "State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University, 100101, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "ZiFeng", 
        "id": "sg:person.014407044335.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014407044335.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Remote Sensing Science", 
          "id": "https://www.grid.ac/institutes/grid.484663.b", 
          "name": [
            "State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University, 100101, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Su", 
        "givenName": "Lin", 
        "id": "sg:person.015520047473.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015520047473.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Atmospheric Physics", 
          "id": "https://www.grid.ac/institutes/grid.424023.3", 
          "name": [
            "State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ge", 
        "givenName": "Cui", 
        "id": "sg:person.011462736713.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011462736713.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Atmospheric Physics", 
          "id": "https://www.grid.ac/institutes/grid.424023.3", 
          "name": [
            "State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Xiao", 
        "id": "sg:person.014364563165.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014364563165.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Remote Sensing Science", 
          "id": "https://www.grid.ac/institutes/grid.484663.b", 
          "name": [
            "State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University, 100101, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zou", 
        "givenName": "MingMin", 
        "id": "sg:person.013413035762.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013413035762.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.rse.2004.05.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000375973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2006.04.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005827008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2004.01.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006006223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/98jd00340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006015536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-3-2025-2003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007960861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-3-2025-2003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007960861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01025401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011888767", 
          "https://doi.org/10.1007/bf01025401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2009.08.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013080137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-8-6627-2008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019541450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s007030070003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024606075", 
          "https://doi.org/10.1007/s007030070003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2006.02.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032679371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2007.09.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032945156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2002jd003179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035000237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10473289.2000.10464117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035791528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2000jd000152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037174476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00168069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038806056", 
          "https://doi.org/10.1007/bf00168069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00168069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038806056", 
          "https://doi.org/10.1007/bf00168069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-10-10399-2010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040466008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2003gl018174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040540408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2002jd002144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045496138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005jd006737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046540215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/98jd01751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050672611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02915684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051889099", 
          "https://doi.org/10.1007/bf02915684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2006.03.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053199757"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-08", 
    "datePublishedReg": "2013-08-01", 
    "description": "We propose a new method to estimate surface-level particulate matter (PM) concentrations by using satellite-retrieved Aerosol Optical Thickness (AOT). This method considers the distribution and variation of Planetary Boundary Layer (PBL) height and relative humidity (RH) at the regional scale. The method estimates surface-level particulate matter concentrations using the data simulated by an atmospheric boundary layer model RAMS and satellite-retrieved AOT. By incorporation MODIS AOT, PBL height and RH simulated by RAMS, this method is applied to estimate the surface-level PM2.5 concentrations in North China region. The result is evaluated by using 16 ground-based observations deployed in the research region, and the result shows a good agreement between estimated PM2.5 concentrations and observations, and the coefficient of determination R2 is 0.61 between the estimated PM2.5 concentrations and the observations. In addition, surface-level PM2.5 concentrations are also estimated by using MODIS AOT, ground-based LIDAR observations and RH measurements. A comparison between the two estimated PM2.5 concentrations shows that the new method proposed in this paper is better than the traditional method. The coefficient of determination R2 is improved from 0.32 to 0.62.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11430-012-4503-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1312375", 
        "issn": [
          "1006-9267", 
          "1006-9313"
        ], 
        "name": "Science China Earth Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "56"
      }
    ], 
    "name": "A method to estimate concentrations of surface-level particulate matter using satellite-based aerosol optical thickness", 
    "pagination": "1422-1433", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8179c39263e53050f5f3bb3cdfbf18fb6b1703a5d6dc54e8af5bc0e5007f1221"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11430-012-4503-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027180341"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11430-012-4503-3", 
      "https://app.dimensions.ai/details/publication/pub.1027180341"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000522.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11430-012-4503-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11430-012-4503-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11430-012-4503-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11430-012-4503-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11430-012-4503-3'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11430-012-4503-3 schema:about anzsrc-for:09
2 anzsrc-for:0909
3 schema:author N962dd83714ca4c2fbc2930df3d69e6b3
4 schema:citation sg:pub.10.1007/bf00168069
5 sg:pub.10.1007/bf01025401
6 sg:pub.10.1007/bf02915684
7 sg:pub.10.1007/s007030070003
8 https://doi.org/10.1016/j.atmosenv.2004.01.039
9 https://doi.org/10.1016/j.atmosenv.2006.02.039
10 https://doi.org/10.1016/j.atmosenv.2006.03.016
11 https://doi.org/10.1016/j.atmosenv.2006.04.044
12 https://doi.org/10.1016/j.atmosenv.2007.09.050
13 https://doi.org/10.1016/j.rse.2004.05.011
14 https://doi.org/10.1016/j.rse.2009.08.009
15 https://doi.org/10.1029/2000jd000152
16 https://doi.org/10.1029/2002jd002144
17 https://doi.org/10.1029/2002jd003179
18 https://doi.org/10.1029/2003gl018174
19 https://doi.org/10.1029/2005jd006737
20 https://doi.org/10.1029/98jd00340
21 https://doi.org/10.1029/98jd01751
22 https://doi.org/10.1080/10473289.2000.10464117
23 https://doi.org/10.5194/acp-10-10399-2010
24 https://doi.org/10.5194/acp-3-2025-2003
25 https://doi.org/10.5194/acp-8-6627-2008
26 schema:datePublished 2013-08
27 schema:datePublishedReg 2013-08-01
28 schema:description We propose a new method to estimate surface-level particulate matter (PM) concentrations by using satellite-retrieved Aerosol Optical Thickness (AOT). This method considers the distribution and variation of Planetary Boundary Layer (PBL) height and relative humidity (RH) at the regional scale. The method estimates surface-level particulate matter concentrations using the data simulated by an atmospheric boundary layer model RAMS and satellite-retrieved AOT. By incorporation MODIS AOT, PBL height and RH simulated by RAMS, this method is applied to estimate the surface-level PM2.5 concentrations in North China region. The result is evaluated by using 16 ground-based observations deployed in the research region, and the result shows a good agreement between estimated PM2.5 concentrations and observations, and the coefficient of determination R2 is 0.61 between the estimated PM2.5 concentrations and the observations. In addition, surface-level PM2.5 concentrations are also estimated by using MODIS AOT, ground-based LIDAR observations and RH measurements. A comparison between the two estimated PM2.5 concentrations shows that the new method proposed in this paper is better than the traditional method. The coefficient of determination R2 is improved from 0.32 to 0.62.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N048e3555c46246b7858bfc37b5a74557
33 N4e41185ef5974d1ab524d5ad3cbef282
34 sg:journal.1312375
35 schema:name A method to estimate concentrations of surface-level particulate matter using satellite-based aerosol optical thickness
36 schema:pagination 1422-1433
37 schema:productId N2f8d15d091454b1aa5ae4114ab0b1377
38 N71bba82333d1412886a9bc75ed7e2481
39 N8129876da2224c39a3b1ef3b978af407
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027180341
41 https://doi.org/10.1007/s11430-012-4503-3
42 schema:sdDatePublished 2019-04-11T01:09
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N14009c6d1c3c43b6b4d2e33c84c362d6
45 schema:url http://link.springer.com/10.1007%2Fs11430-012-4503-3
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N048e3555c46246b7858bfc37b5a74557 schema:issueNumber 8
50 rdf:type schema:PublicationIssue
51 N14009c6d1c3c43b6b4d2e33c84c362d6 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N2f8d15d091454b1aa5ae4114ab0b1377 schema:name doi
54 schema:value 10.1007/s11430-012-4503-3
55 rdf:type schema:PropertyValue
56 N4e41185ef5974d1ab524d5ad3cbef282 schema:volumeNumber 56
57 rdf:type schema:PublicationVolume
58 N541bedc5a0e140d797c07624bddfa58b rdf:first sg:person.01057333523.60
59 rdf:rest N7efc287593a942fdb51ed9205ac5d909
60 N71bba82333d1412886a9bc75ed7e2481 schema:name readcube_id
61 schema:value 8179c39263e53050f5f3bb3cdfbf18fb6b1703a5d6dc54e8af5bc0e5007f1221
62 rdf:type schema:PropertyValue
63 N7efc287593a942fdb51ed9205ac5d909 rdf:first sg:person.016513234112.70
64 rdf:rest Nf574647f02e84a32af7241ede1864298
65 N8129876da2224c39a3b1ef3b978af407 schema:name dimensions_id
66 schema:value pub.1027180341
67 rdf:type schema:PropertyValue
68 N915128b7d35242c189ea1e98efc8c721 rdf:first sg:person.015520047473.70
69 rdf:rest Ne2f88d77fb4c48dabdb5f3b4f11450df
70 N962dd83714ca4c2fbc2930df3d69e6b3 rdf:first sg:person.015513554772.05
71 rdf:rest N541bedc5a0e140d797c07624bddfa58b
72 Ndb6f6e588a3844d5afc206e8c88c8b8e rdf:first sg:person.014364563165.62
73 rdf:rest Ndea4da938c37453a891d18a1fc85d34f
74 Ndea4da938c37453a891d18a1fc85d34f rdf:first sg:person.013413035762.45
75 rdf:rest rdf:nil
76 Ne2f88d77fb4c48dabdb5f3b4f11450df rdf:first sg:person.011462736713.02
77 rdf:rest Ndb6f6e588a3844d5afc206e8c88c8b8e
78 Nf574647f02e84a32af7241ede1864298 rdf:first sg:person.014407044335.43
79 rdf:rest N915128b7d35242c189ea1e98efc8c721
80 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
81 schema:name Engineering
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0909 schema:inDefinedTermSet anzsrc-for:
84 schema:name Geomatic Engineering
85 rdf:type schema:DefinedTerm
86 sg:journal.1312375 schema:issn 1006-9267
87 1006-9313
88 schema:name Science China Earth Sciences
89 rdf:type schema:Periodical
90 sg:person.01057333523.60 schema:affiliation https://www.grid.ac/institutes/grid.424023.3
91 schema:familyName Zhang
92 schema:givenName MeiGen
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057333523.60
94 rdf:type schema:Person
95 sg:person.011462736713.02 schema:affiliation https://www.grid.ac/institutes/grid.424023.3
96 schema:familyName Ge
97 schema:givenName Cui
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011462736713.02
99 rdf:type schema:Person
100 sg:person.013413035762.45 schema:affiliation https://www.grid.ac/institutes/grid.484663.b
101 schema:familyName Zou
102 schema:givenName MingMin
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013413035762.45
104 rdf:type schema:Person
105 sg:person.014364563165.62 schema:affiliation https://www.grid.ac/institutes/grid.424023.3
106 schema:familyName Han
107 schema:givenName Xiao
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014364563165.62
109 rdf:type schema:Person
110 sg:person.014407044335.43 schema:affiliation https://www.grid.ac/institutes/grid.484663.b
111 schema:familyName Wang
112 schema:givenName ZiFeng
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014407044335.43
114 rdf:type schema:Person
115 sg:person.015513554772.05 schema:affiliation https://www.grid.ac/institutes/grid.484663.b
116 schema:familyName Tao
117 schema:givenName JinHua
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015513554772.05
119 rdf:type schema:Person
120 sg:person.015520047473.70 schema:affiliation https://www.grid.ac/institutes/grid.484663.b
121 schema:familyName Su
122 schema:givenName Lin
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015520047473.70
124 rdf:type schema:Person
125 sg:person.016513234112.70 schema:affiliation https://www.grid.ac/institutes/grid.484663.b
126 schema:familyName Chen
127 schema:givenName LiangFu
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016513234112.70
129 rdf:type schema:Person
130 sg:pub.10.1007/bf00168069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038806056
131 https://doi.org/10.1007/bf00168069
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/bf01025401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011888767
134 https://doi.org/10.1007/bf01025401
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/bf02915684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051889099
137 https://doi.org/10.1007/bf02915684
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s007030070003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024606075
140 https://doi.org/10.1007/s007030070003
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.atmosenv.2004.01.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006006223
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.atmosenv.2006.02.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032679371
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.atmosenv.2006.03.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053199757
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.atmosenv.2006.04.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005827008
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.atmosenv.2007.09.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032945156
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.rse.2004.05.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000375973
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.rse.2009.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013080137
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1029/2000jd000152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037174476
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1029/2002jd002144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045496138
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1029/2002jd003179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035000237
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1029/2003gl018174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040540408
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1029/2005jd006737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046540215
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1029/98jd00340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006015536
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1029/98jd01751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050672611
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1080/10473289.2000.10464117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035791528
171 rdf:type schema:CreativeWork
172 https://doi.org/10.5194/acp-10-10399-2010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040466008
173 rdf:type schema:CreativeWork
174 https://doi.org/10.5194/acp-3-2025-2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007960861
175 rdf:type schema:CreativeWork
176 https://doi.org/10.5194/acp-8-6627-2008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019541450
177 rdf:type schema:CreativeWork
178 https://www.grid.ac/institutes/grid.424023.3 schema:alternateName Institute of Atmospheric Physics
179 schema:name State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China
180 rdf:type schema:Organization
181 https://www.grid.ac/institutes/grid.484663.b schema:alternateName State Key Laboratory of Remote Sensing Science
182 schema:name State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China
183 State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University, 100101, Beijing, China
184 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...