A method to estimate concentrations of surface-level particulate matter using satellite-based aerosol optical thickness View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-08

AUTHORS

JinHua Tao, MeiGen Zhang, LiangFu Chen, ZiFeng Wang, Lin Su, Cui Ge, Xiao Han, MingMin Zou

ABSTRACT

We propose a new method to estimate surface-level particulate matter (PM) concentrations by using satellite-retrieved Aerosol Optical Thickness (AOT). This method considers the distribution and variation of Planetary Boundary Layer (PBL) height and relative humidity (RH) at the regional scale. The method estimates surface-level particulate matter concentrations using the data simulated by an atmospheric boundary layer model RAMS and satellite-retrieved AOT. By incorporation MODIS AOT, PBL height and RH simulated by RAMS, this method is applied to estimate the surface-level PM2.5 concentrations in North China region. The result is evaluated by using 16 ground-based observations deployed in the research region, and the result shows a good agreement between estimated PM2.5 concentrations and observations, and the coefficient of determination R2 is 0.61 between the estimated PM2.5 concentrations and the observations. In addition, surface-level PM2.5 concentrations are also estimated by using MODIS AOT, ground-based LIDAR observations and RH measurements. A comparison between the two estimated PM2.5 concentrations shows that the new method proposed in this paper is better than the traditional method. The coefficient of determination R2 is improved from 0.32 to 0.62. More... »

PAGES

1422-1433

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11430-012-4503-3

DOI

http://dx.doi.org/10.1007/s11430-012-4503-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027180341


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0909", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geomatic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Remote Sensing Science", 
          "id": "https://www.grid.ac/institutes/grid.484663.b", 
          "name": [
            "State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China", 
            "State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University, 100101, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tao", 
        "givenName": "JinHua", 
        "id": "sg:person.015513554772.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015513554772.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Atmospheric Physics", 
          "id": "https://www.grid.ac/institutes/grid.424023.3", 
          "name": [
            "State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "MeiGen", 
        "id": "sg:person.01057333523.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057333523.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Remote Sensing Science", 
          "id": "https://www.grid.ac/institutes/grid.484663.b", 
          "name": [
            "State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University, 100101, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "LiangFu", 
        "id": "sg:person.016513234112.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016513234112.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Remote Sensing Science", 
          "id": "https://www.grid.ac/institutes/grid.484663.b", 
          "name": [
            "State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University, 100101, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "ZiFeng", 
        "id": "sg:person.014407044335.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014407044335.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Remote Sensing Science", 
          "id": "https://www.grid.ac/institutes/grid.484663.b", 
          "name": [
            "State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University, 100101, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Su", 
        "givenName": "Lin", 
        "id": "sg:person.015520047473.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015520047473.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Atmospheric Physics", 
          "id": "https://www.grid.ac/institutes/grid.424023.3", 
          "name": [
            "State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ge", 
        "givenName": "Cui", 
        "id": "sg:person.011462736713.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011462736713.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Atmospheric Physics", 
          "id": "https://www.grid.ac/institutes/grid.424023.3", 
          "name": [
            "State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Xiao", 
        "id": "sg:person.014364563165.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014364563165.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Remote Sensing Science", 
          "id": "https://www.grid.ac/institutes/grid.484663.b", 
          "name": [
            "State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University, 100101, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zou", 
        "givenName": "MingMin", 
        "id": "sg:person.013413035762.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013413035762.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.rse.2004.05.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000375973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2006.04.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005827008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2004.01.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006006223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/98jd00340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006015536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-3-2025-2003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007960861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-3-2025-2003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007960861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01025401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011888767", 
          "https://doi.org/10.1007/bf01025401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2009.08.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013080137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-8-6627-2008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019541450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s007030070003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024606075", 
          "https://doi.org/10.1007/s007030070003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2006.02.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032679371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2007.09.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032945156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2002jd003179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035000237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10473289.2000.10464117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035791528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2000jd000152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037174476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00168069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038806056", 
          "https://doi.org/10.1007/bf00168069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00168069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038806056", 
          "https://doi.org/10.1007/bf00168069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-10-10399-2010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040466008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2003gl018174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040540408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2002jd002144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045496138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005jd006737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046540215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/98jd01751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050672611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02915684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051889099", 
          "https://doi.org/10.1007/bf02915684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2006.03.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053199757"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-08", 
    "datePublishedReg": "2013-08-01", 
    "description": "We propose a new method to estimate surface-level particulate matter (PM) concentrations by using satellite-retrieved Aerosol Optical Thickness (AOT). This method considers the distribution and variation of Planetary Boundary Layer (PBL) height and relative humidity (RH) at the regional scale. The method estimates surface-level particulate matter concentrations using the data simulated by an atmospheric boundary layer model RAMS and satellite-retrieved AOT. By incorporation MODIS AOT, PBL height and RH simulated by RAMS, this method is applied to estimate the surface-level PM2.5 concentrations in North China region. The result is evaluated by using 16 ground-based observations deployed in the research region, and the result shows a good agreement between estimated PM2.5 concentrations and observations, and the coefficient of determination R2 is 0.61 between the estimated PM2.5 concentrations and the observations. In addition, surface-level PM2.5 concentrations are also estimated by using MODIS AOT, ground-based LIDAR observations and RH measurements. A comparison between the two estimated PM2.5 concentrations shows that the new method proposed in this paper is better than the traditional method. The coefficient of determination R2 is improved from 0.32 to 0.62.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11430-012-4503-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1312375", 
        "issn": [
          "1006-9267", 
          "1006-9313"
        ], 
        "name": "Science China Earth Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "56"
      }
    ], 
    "name": "A method to estimate concentrations of surface-level particulate matter using satellite-based aerosol optical thickness", 
    "pagination": "1422-1433", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8179c39263e53050f5f3bb3cdfbf18fb6b1703a5d6dc54e8af5bc0e5007f1221"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11430-012-4503-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027180341"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11430-012-4503-3", 
      "https://app.dimensions.ai/details/publication/pub.1027180341"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000522.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11430-012-4503-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11430-012-4503-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11430-012-4503-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11430-012-4503-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11430-012-4503-3'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11430-012-4503-3 schema:about anzsrc-for:09
2 anzsrc-for:0909
3 schema:author Nd86db7dca6cc46fbbb2867685981e360
4 schema:citation sg:pub.10.1007/bf00168069
5 sg:pub.10.1007/bf01025401
6 sg:pub.10.1007/bf02915684
7 sg:pub.10.1007/s007030070003
8 https://doi.org/10.1016/j.atmosenv.2004.01.039
9 https://doi.org/10.1016/j.atmosenv.2006.02.039
10 https://doi.org/10.1016/j.atmosenv.2006.03.016
11 https://doi.org/10.1016/j.atmosenv.2006.04.044
12 https://doi.org/10.1016/j.atmosenv.2007.09.050
13 https://doi.org/10.1016/j.rse.2004.05.011
14 https://doi.org/10.1016/j.rse.2009.08.009
15 https://doi.org/10.1029/2000jd000152
16 https://doi.org/10.1029/2002jd002144
17 https://doi.org/10.1029/2002jd003179
18 https://doi.org/10.1029/2003gl018174
19 https://doi.org/10.1029/2005jd006737
20 https://doi.org/10.1029/98jd00340
21 https://doi.org/10.1029/98jd01751
22 https://doi.org/10.1080/10473289.2000.10464117
23 https://doi.org/10.5194/acp-10-10399-2010
24 https://doi.org/10.5194/acp-3-2025-2003
25 https://doi.org/10.5194/acp-8-6627-2008
26 schema:datePublished 2013-08
27 schema:datePublishedReg 2013-08-01
28 schema:description We propose a new method to estimate surface-level particulate matter (PM) concentrations by using satellite-retrieved Aerosol Optical Thickness (AOT). This method considers the distribution and variation of Planetary Boundary Layer (PBL) height and relative humidity (RH) at the regional scale. The method estimates surface-level particulate matter concentrations using the data simulated by an atmospheric boundary layer model RAMS and satellite-retrieved AOT. By incorporation MODIS AOT, PBL height and RH simulated by RAMS, this method is applied to estimate the surface-level PM2.5 concentrations in North China region. The result is evaluated by using 16 ground-based observations deployed in the research region, and the result shows a good agreement between estimated PM2.5 concentrations and observations, and the coefficient of determination R2 is 0.61 between the estimated PM2.5 concentrations and the observations. In addition, surface-level PM2.5 concentrations are also estimated by using MODIS AOT, ground-based LIDAR observations and RH measurements. A comparison between the two estimated PM2.5 concentrations shows that the new method proposed in this paper is better than the traditional method. The coefficient of determination R2 is improved from 0.32 to 0.62.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N4900c672d22749c9921e7e141a9a9d89
33 N49a2254d1c6f4eefae0915cb6639f964
34 sg:journal.1312375
35 schema:name A method to estimate concentrations of surface-level particulate matter using satellite-based aerosol optical thickness
36 schema:pagination 1422-1433
37 schema:productId N221cbd5009e849888baa66f728be466e
38 N4e7032b9ab3e436e92baf17a5f720db9
39 Nf5aac4dca58347c9a40585421709fc0a
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027180341
41 https://doi.org/10.1007/s11430-012-4503-3
42 schema:sdDatePublished 2019-04-11T01:09
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N2cf269f0b3784949bea1f1935d9cec03
45 schema:url http://link.springer.com/10.1007%2Fs11430-012-4503-3
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N1a7dd17982004315bb72632b6d5549c3 rdf:first sg:person.015520047473.70
50 rdf:rest Nfb8e615df6f7495f86daf57522ae0a7e
51 N221cbd5009e849888baa66f728be466e schema:name readcube_id
52 schema:value 8179c39263e53050f5f3bb3cdfbf18fb6b1703a5d6dc54e8af5bc0e5007f1221
53 rdf:type schema:PropertyValue
54 N2cf269f0b3784949bea1f1935d9cec03 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N386480d7e1db4e3484a73edca1eed2bf rdf:first sg:person.013413035762.45
57 rdf:rest rdf:nil
58 N429ec3c14c904d029dde6cef8d27bae1 rdf:first sg:person.01057333523.60
59 rdf:rest N68a0618e29d848e1bfc7db816c0bea09
60 N4900c672d22749c9921e7e141a9a9d89 schema:volumeNumber 56
61 rdf:type schema:PublicationVolume
62 N49a2254d1c6f4eefae0915cb6639f964 schema:issueNumber 8
63 rdf:type schema:PublicationIssue
64 N4e7032b9ab3e436e92baf17a5f720db9 schema:name doi
65 schema:value 10.1007/s11430-012-4503-3
66 rdf:type schema:PropertyValue
67 N4ff81e18002a47709aa2e7e803fb4032 rdf:first sg:person.014407044335.43
68 rdf:rest N1a7dd17982004315bb72632b6d5549c3
69 N68a0618e29d848e1bfc7db816c0bea09 rdf:first sg:person.016513234112.70
70 rdf:rest N4ff81e18002a47709aa2e7e803fb4032
71 Nd01f7522e92540f78048820a7053bad5 rdf:first sg:person.014364563165.62
72 rdf:rest N386480d7e1db4e3484a73edca1eed2bf
73 Nd86db7dca6cc46fbbb2867685981e360 rdf:first sg:person.015513554772.05
74 rdf:rest N429ec3c14c904d029dde6cef8d27bae1
75 Nf5aac4dca58347c9a40585421709fc0a schema:name dimensions_id
76 schema:value pub.1027180341
77 rdf:type schema:PropertyValue
78 Nfb8e615df6f7495f86daf57522ae0a7e rdf:first sg:person.011462736713.02
79 rdf:rest Nd01f7522e92540f78048820a7053bad5
80 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
81 schema:name Engineering
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0909 schema:inDefinedTermSet anzsrc-for:
84 schema:name Geomatic Engineering
85 rdf:type schema:DefinedTerm
86 sg:journal.1312375 schema:issn 1006-9267
87 1006-9313
88 schema:name Science China Earth Sciences
89 rdf:type schema:Periodical
90 sg:person.01057333523.60 schema:affiliation https://www.grid.ac/institutes/grid.424023.3
91 schema:familyName Zhang
92 schema:givenName MeiGen
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057333523.60
94 rdf:type schema:Person
95 sg:person.011462736713.02 schema:affiliation https://www.grid.ac/institutes/grid.424023.3
96 schema:familyName Ge
97 schema:givenName Cui
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011462736713.02
99 rdf:type schema:Person
100 sg:person.013413035762.45 schema:affiliation https://www.grid.ac/institutes/grid.484663.b
101 schema:familyName Zou
102 schema:givenName MingMin
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013413035762.45
104 rdf:type schema:Person
105 sg:person.014364563165.62 schema:affiliation https://www.grid.ac/institutes/grid.424023.3
106 schema:familyName Han
107 schema:givenName Xiao
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014364563165.62
109 rdf:type schema:Person
110 sg:person.014407044335.43 schema:affiliation https://www.grid.ac/institutes/grid.484663.b
111 schema:familyName Wang
112 schema:givenName ZiFeng
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014407044335.43
114 rdf:type schema:Person
115 sg:person.015513554772.05 schema:affiliation https://www.grid.ac/institutes/grid.484663.b
116 schema:familyName Tao
117 schema:givenName JinHua
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015513554772.05
119 rdf:type schema:Person
120 sg:person.015520047473.70 schema:affiliation https://www.grid.ac/institutes/grid.484663.b
121 schema:familyName Su
122 schema:givenName Lin
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015520047473.70
124 rdf:type schema:Person
125 sg:person.016513234112.70 schema:affiliation https://www.grid.ac/institutes/grid.484663.b
126 schema:familyName Chen
127 schema:givenName LiangFu
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016513234112.70
129 rdf:type schema:Person
130 sg:pub.10.1007/bf00168069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038806056
131 https://doi.org/10.1007/bf00168069
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/bf01025401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011888767
134 https://doi.org/10.1007/bf01025401
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/bf02915684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051889099
137 https://doi.org/10.1007/bf02915684
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s007030070003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024606075
140 https://doi.org/10.1007/s007030070003
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.atmosenv.2004.01.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006006223
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.atmosenv.2006.02.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032679371
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.atmosenv.2006.03.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053199757
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.atmosenv.2006.04.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005827008
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.atmosenv.2007.09.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032945156
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.rse.2004.05.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000375973
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.rse.2009.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013080137
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1029/2000jd000152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037174476
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1029/2002jd002144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045496138
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1029/2002jd003179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035000237
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1029/2003gl018174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040540408
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1029/2005jd006737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046540215
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1029/98jd00340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006015536
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1029/98jd01751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050672611
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1080/10473289.2000.10464117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035791528
171 rdf:type schema:CreativeWork
172 https://doi.org/10.5194/acp-10-10399-2010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040466008
173 rdf:type schema:CreativeWork
174 https://doi.org/10.5194/acp-3-2025-2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007960861
175 rdf:type schema:CreativeWork
176 https://doi.org/10.5194/acp-8-6627-2008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019541450
177 rdf:type schema:CreativeWork
178 https://www.grid.ac/institutes/grid.424023.3 schema:alternateName Institute of Atmospheric Physics
179 schema:name State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China
180 rdf:type schema:Organization
181 https://www.grid.ac/institutes/grid.484663.b schema:alternateName State Key Laboratory of Remote Sensing Science
182 schema:name State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China
183 State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University, 100101, Beijing, China
184 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...