Neural substrates of data-driven scientific discovery: An fMRI study during performance of number series completion task View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-05-15

AUTHORS

Ning Zhong, PeiPeng Liang, YuLin Qin, ShengFu Lu, YanHui Yang, KunCheng Li

ABSTRACT

Although much has been known about how humans psychologically perform data-driven scientific discovery, less has been known about its brain mechanism. The number series completion is a typical data-driven scientific discovery task, and has been demonstrated to possess the priming effect, which is attributed to the regularity identification and its subsequent extrapolation. In order to reduce the heterogeneities and make the experimental task proper for a brain imaging study, the number magnitude and arithmetic operation involved in number series completion tasks are further restricted. Behavioral performance in Experiment 1 shows the reliable priming effect for targets as expected. Then, a factorial design (the priming effect: prime vs. target; the period length: simple vs. complex) of event-related functional magnetic resonance imaging (fMRI) is used in Experiment 2 to examine the neural basis of data-driven scientific discovery. The fMRI results reveal a double dissociation of the left DLPFC (dorsolateral prefrontal cortex) and the left APFC (anterior prefrontal cortex) between the simple (period length=1) and the complex (period length=2) number series completion task. The priming effect in the left DLPFC is more significant for the simple task than for the complex task, while the priming effect in the left APFC is more significant for the complex task than for the simple task. The reliable double dissociation may suggest the different roles of the left DLPFC and left APFC in data-driven scientific discovery. The left DLPFC (BA 46) may play a crucial role in rule identification, while the left APFC (BA 10) may be related to mental set maintenance needed during rule identification and extrapolation. More... »

PAGES

466-473

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11427-011-4166-x

DOI

http://dx.doi.org/10.1007/s11427-011-4166-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002287180

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21574047


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cognition", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neurons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prefrontal Cortex", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Psychomotor Performance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reaction Time", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Life Science and Informatics, Maebashi Institute of Technology, 371-0816, Maebashi, Japan", 
          "id": "http://www.grid.ac/institutes/grid.444244.6", 
          "name": [
            "The International WIC Institute, Beijing University of Technology, 100124, Beijing, China", 
            "Beijing Municipal Lab of Brain Informatics, 100124, Beijing, China", 
            "Department of Life Science and Informatics, Maebashi Institute of Technology, 371-0816, Maebashi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhong", 
        "givenName": "Ning", 
        "id": "sg:person.012247427067.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012247427067.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xuanwu Hospital, Capital Medical University, 100053, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.413259.8", 
          "name": [
            "Xuanwu Hospital, Capital Medical University, 100053, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liang", 
        "givenName": "PeiPeng", 
        "id": "sg:person.0722540505.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722540505.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Psychology, Carnegie Mellon University, 15213, Pittsburgh, PA, USA", 
          "id": "http://www.grid.ac/institutes/grid.147455.6", 
          "name": [
            "The International WIC Institute, Beijing University of Technology, 100124, Beijing, China", 
            "Beijing Municipal Lab of Brain Informatics, 100124, Beijing, China", 
            "Department of Psychology, Carnegie Mellon University, 15213, Pittsburgh, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qin", 
        "givenName": "YuLin", 
        "id": "sg:person.01255045237.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255045237.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Municipal Lab of Brain Informatics, 100124, Beijing, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "The International WIC Institute, Beijing University of Technology, 100124, Beijing, China", 
            "Beijing Municipal Lab of Brain Informatics, 100124, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "ShengFu", 
        "id": "sg:person.0741064405.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741064405.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xuanwu Hospital, Capital Medical University, 100053, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.413259.8", 
          "name": [
            "Beijing Municipal Lab of Brain Informatics, 100124, Beijing, China", 
            "Xuanwu Hospital, Capital Medical University, 100053, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "YanHui", 
        "id": "sg:person.01063243031.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063243031.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xuanwu Hospital, Capital Medical University, 100053, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.413259.8", 
          "name": [
            "Beijing Municipal Lab of Brain Informatics, 100124, Beijing, China", 
            "Xuanwu Hospital, Capital Medical University, 100053, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "KunCheng", 
        "id": "sg:person.01326527402.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326527402.59"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nn987", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048801087", 
          "https://doi.org/10.1038/nn987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3758/bf03331976", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084968677", 
          "https://doi.org/10.3758/bf03331976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-77028-2_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016250293", 
          "https://doi.org/10.1007/978-3-540-77028-2_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3758/bf03202506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007000251", 
          "https://doi.org/10.3758/bf03202506"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-05-15", 
    "datePublishedReg": "2011-05-15", 
    "description": "Although much has been known about how humans psychologically perform data-driven scientific discovery, less has been known about its brain mechanism. The number series completion is a typical data-driven scientific discovery task, and has been demonstrated to possess the priming effect, which is attributed to the regularity identification and its subsequent extrapolation. In order to reduce the heterogeneities and make the experimental task proper for a brain imaging study, the number magnitude and arithmetic operation involved in number series completion tasks are further restricted. Behavioral performance in Experiment 1 shows the reliable priming effect for targets as expected. Then, a factorial design (the priming effect: prime vs. target; the period length: simple vs. complex) of event-related functional magnetic resonance imaging (fMRI) is used in Experiment 2 to examine the neural basis of data-driven scientific discovery. The fMRI results reveal a double dissociation of the left DLPFC (dorsolateral prefrontal cortex) and the left APFC (anterior prefrontal cortex) between the simple (period length=1) and the complex (period length=2) number series completion task. The priming effect in the left DLPFC is more significant for the simple task than for the complex task, while the priming effect in the left APFC is more significant for the complex task than for the simple task. The reliable double dissociation may suggest the different roles of the left DLPFC and left APFC in data-driven scientific discovery. The left DLPFC (BA 46) may play a crucial role in rule identification, while the left APFC (BA 10) may be related to mental set maintenance needed during rule identification and extrapolation.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11427-011-4166-x", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1043382", 
        "issn": [
          "1674-7305", 
          "1869-1889"
        ], 
        "name": "Science China Life Sciences", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "54"
      }
    ], 
    "keywords": [
      "number series completion task", 
      "series completion tasks", 
      "functional magnetic resonance imaging", 
      "left DLPFC", 
      "completion task", 
      "double dissociation", 
      "priming effect", 
      "event-related functional magnetic resonance imaging", 
      "data-driven scientific discovery", 
      "number series completion", 
      "reliable priming effects", 
      "simple task", 
      "brain imaging studies", 
      "scientific discovery tasks", 
      "rule identification", 
      "complex task", 
      "neural basis", 
      "brain mechanisms", 
      "fMRI results", 
      "experimental tasks", 
      "neural substrates", 
      "behavioral performance", 
      "fMRI study", 
      "Experiment 1", 
      "Experiment 2", 
      "DLPFC", 
      "number magnitude", 
      "task", 
      "magnetic resonance imaging", 
      "APFC", 
      "series completion", 
      "resonance imaging", 
      "imaging studies", 
      "scientific discovery", 
      "different roles", 
      "discovery tasks", 
      "factorial design", 
      "dissociation", 
      "performance", 
      "subsequent extrapolation", 
      "effect", 
      "crucial role", 
      "study", 
      "role", 
      "imaging", 
      "humans", 
      "identification", 
      "discovery", 
      "arithmetic operations", 
      "completion", 
      "target", 
      "heterogeneity", 
      "maintenance", 
      "mechanism", 
      "results", 
      "basis", 
      "design", 
      "extrapolation", 
      "order", 
      "magnitude", 
      "operation", 
      "substrate"
    ], 
    "name": "Neural substrates of data-driven scientific discovery: An fMRI study during performance of number series completion task", 
    "pagination": "466-473", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002287180"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11427-011-4166-x"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21574047"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11427-011-4166-x", 
      "https://app.dimensions.ai/details/publication/pub.1002287180"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_541.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11427-011-4166-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11427-011-4166-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11427-011-4166-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11427-011-4166-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11427-011-4166-x'


 

This table displays all metadata directly associated to this object as RDF triples.

237 TRIPLES      21 PREDICATES      103 URIs      92 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11427-011-4166-x schema:about N31b772a761d34e198295100a710e278d
2 N3cb5ea0c96764ec1adff521960a3814c
3 N4c6113cda20647eaa85e54404b21f855
4 N5ef8485a508d44d68083c4cd466b1691
5 N5f57657293794a3f93d4a1d3d1796f84
6 N6b3a17b2161745f9859b161dcce99e87
7 N6cbec40c072041b2a9240d1921f361c9
8 N71419cbada16416398a3a501696ce8ae
9 N7adbbc3bc7e1471abcc9936656875f67
10 N8bf12b3aaf8644f6834d0f3fa281280f
11 Na4e3b56efd5f4932b266df0698f7ec9c
12 Nacffd30a3cf74370809f0309075e15c7
13 Neb809dcf3bd84c53bf05000cd27a5252
14 anzsrc-for:06
15 schema:author Nad8af0e90a124bbe9d2f4a569ae75afb
16 schema:citation sg:pub.10.1007/978-3-540-77028-2_12
17 sg:pub.10.1038/nn987
18 sg:pub.10.3758/bf03202506
19 sg:pub.10.3758/bf03331976
20 schema:datePublished 2011-05-15
21 schema:datePublishedReg 2011-05-15
22 schema:description Although much has been known about how humans psychologically perform data-driven scientific discovery, less has been known about its brain mechanism. The number series completion is a typical data-driven scientific discovery task, and has been demonstrated to possess the priming effect, which is attributed to the regularity identification and its subsequent extrapolation. In order to reduce the heterogeneities and make the experimental task proper for a brain imaging study, the number magnitude and arithmetic operation involved in number series completion tasks are further restricted. Behavioral performance in Experiment 1 shows the reliable priming effect for targets as expected. Then, a factorial design (the priming effect: prime vs. target; the period length: simple vs. complex) of event-related functional magnetic resonance imaging (fMRI) is used in Experiment 2 to examine the neural basis of data-driven scientific discovery. The fMRI results reveal a double dissociation of the left DLPFC (dorsolateral prefrontal cortex) and the left APFC (anterior prefrontal cortex) between the simple (period length=1) and the complex (period length=2) number series completion task. The priming effect in the left DLPFC is more significant for the simple task than for the complex task, while the priming effect in the left APFC is more significant for the complex task than for the simple task. The reliable double dissociation may suggest the different roles of the left DLPFC and left APFC in data-driven scientific discovery. The left DLPFC (BA 46) may play a crucial role in rule identification, while the left APFC (BA 10) may be related to mental set maintenance needed during rule identification and extrapolation.
23 schema:genre article
24 schema:isAccessibleForFree false
25 schema:isPartOf N5bd87ca0c45443c489401409f1c7dc3e
26 N76270d4f5da142938b022a9038899588
27 sg:journal.1043382
28 schema:keywords APFC
29 DLPFC
30 Experiment 1
31 Experiment 2
32 arithmetic operations
33 basis
34 behavioral performance
35 brain imaging studies
36 brain mechanisms
37 completion
38 completion task
39 complex task
40 crucial role
41 data-driven scientific discovery
42 design
43 different roles
44 discovery
45 discovery tasks
46 dissociation
47 double dissociation
48 effect
49 event-related functional magnetic resonance imaging
50 experimental tasks
51 extrapolation
52 fMRI results
53 fMRI study
54 factorial design
55 functional magnetic resonance imaging
56 heterogeneity
57 humans
58 identification
59 imaging
60 imaging studies
61 left DLPFC
62 magnetic resonance imaging
63 magnitude
64 maintenance
65 mechanism
66 neural basis
67 neural substrates
68 number magnitude
69 number series completion
70 number series completion task
71 operation
72 order
73 performance
74 priming effect
75 reliable priming effects
76 resonance imaging
77 results
78 role
79 rule identification
80 scientific discovery
81 scientific discovery tasks
82 series completion
83 series completion tasks
84 simple task
85 study
86 subsequent extrapolation
87 substrate
88 target
89 task
90 schema:name Neural substrates of data-driven scientific discovery: An fMRI study during performance of number series completion task
91 schema:pagination 466-473
92 schema:productId N34fc1806a790460a866ec028cdbe073f
93 N49a162dbfed6430d81e822e986f3c53a
94 Nd47edc20b63f4edbad164710a3931439
95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002287180
96 https://doi.org/10.1007/s11427-011-4166-x
97 schema:sdDatePublished 2022-10-01T06:36
98 schema:sdLicense https://scigraph.springernature.com/explorer/license/
99 schema:sdPublisher N6807256b8c3c417ea67c2a31be812196
100 schema:url https://doi.org/10.1007/s11427-011-4166-x
101 sgo:license sg:explorer/license/
102 sgo:sdDataset articles
103 rdf:type schema:ScholarlyArticle
104 N31b772a761d34e198295100a710e278d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Adult
106 rdf:type schema:DefinedTerm
107 N34fc1806a790460a866ec028cdbe073f schema:name doi
108 schema:value 10.1007/s11427-011-4166-x
109 rdf:type schema:PropertyValue
110 N3cb5ea0c96764ec1adff521960a3814c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Male
112 rdf:type schema:DefinedTerm
113 N44dab4eb7e184aa597be796c3be1dbbf rdf:first sg:person.01326527402.59
114 rdf:rest rdf:nil
115 N49a162dbfed6430d81e822e986f3c53a schema:name dimensions_id
116 schema:value pub.1002287180
117 rdf:type schema:PropertyValue
118 N4c6113cda20647eaa85e54404b21f855 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Reaction Time
120 rdf:type schema:DefinedTerm
121 N4e5990ff308c4c6ea8ef02f399f20fa4 rdf:first sg:person.01255045237.08
122 rdf:rest N4e772efe8dde4c0794bbce623006f836
123 N4e772efe8dde4c0794bbce623006f836 rdf:first sg:person.0741064405.61
124 rdf:rest Nc7dcda3dd8f74212bb01c748e806afdc
125 N5bd87ca0c45443c489401409f1c7dc3e schema:volumeNumber 54
126 rdf:type schema:PublicationVolume
127 N5ef8485a508d44d68083c4cd466b1691 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Time Factors
129 rdf:type schema:DefinedTerm
130 N5f57657293794a3f93d4a1d3d1796f84 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Humans
132 rdf:type schema:DefinedTerm
133 N6807256b8c3c417ea67c2a31be812196 schema:name Springer Nature - SN SciGraph project
134 rdf:type schema:Organization
135 N6b3a17b2161745f9859b161dcce99e87 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Cognition
137 rdf:type schema:DefinedTerm
138 N6cbec40c072041b2a9240d1921f361c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Brain
140 rdf:type schema:DefinedTerm
141 N71419cbada16416398a3a501696ce8ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Prefrontal Cortex
143 rdf:type schema:DefinedTerm
144 N76270d4f5da142938b022a9038899588 schema:issueNumber 5
145 rdf:type schema:PublicationIssue
146 N7adbbc3bc7e1471abcc9936656875f67 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Neurons
148 rdf:type schema:DefinedTerm
149 N8bf12b3aaf8644f6834d0f3fa281280f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Magnetic Resonance Imaging
151 rdf:type schema:DefinedTerm
152 Na4e3b56efd5f4932b266df0698f7ec9c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Brain Mapping
154 rdf:type schema:DefinedTerm
155 Nacffd30a3cf74370809f0309075e15c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Image Processing, Computer-Assisted
157 rdf:type schema:DefinedTerm
158 Nad8af0e90a124bbe9d2f4a569ae75afb rdf:first sg:person.012247427067.95
159 rdf:rest Nc28aca14ce0743a7b960151fc99eed0e
160 Nc28aca14ce0743a7b960151fc99eed0e rdf:first sg:person.0722540505.81
161 rdf:rest N4e5990ff308c4c6ea8ef02f399f20fa4
162 Nc7dcda3dd8f74212bb01c748e806afdc rdf:first sg:person.01063243031.69
163 rdf:rest N44dab4eb7e184aa597be796c3be1dbbf
164 Nd47edc20b63f4edbad164710a3931439 schema:name pubmed_id
165 schema:value 21574047
166 rdf:type schema:PropertyValue
167 Neb809dcf3bd84c53bf05000cd27a5252 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Psychomotor Performance
169 rdf:type schema:DefinedTerm
170 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
171 schema:name Biological Sciences
172 rdf:type schema:DefinedTerm
173 sg:journal.1043382 schema:issn 1674-7305
174 1869-1889
175 schema:name Science China Life Sciences
176 schema:publisher Springer Nature
177 rdf:type schema:Periodical
178 sg:person.01063243031.69 schema:affiliation grid-institutes:grid.413259.8
179 schema:familyName Yang
180 schema:givenName YanHui
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063243031.69
182 rdf:type schema:Person
183 sg:person.012247427067.95 schema:affiliation grid-institutes:grid.444244.6
184 schema:familyName Zhong
185 schema:givenName Ning
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012247427067.95
187 rdf:type schema:Person
188 sg:person.01255045237.08 schema:affiliation grid-institutes:grid.147455.6
189 schema:familyName Qin
190 schema:givenName YuLin
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255045237.08
192 rdf:type schema:Person
193 sg:person.01326527402.59 schema:affiliation grid-institutes:grid.413259.8
194 schema:familyName Li
195 schema:givenName KunCheng
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326527402.59
197 rdf:type schema:Person
198 sg:person.0722540505.81 schema:affiliation grid-institutes:grid.413259.8
199 schema:familyName Liang
200 schema:givenName PeiPeng
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722540505.81
202 rdf:type schema:Person
203 sg:person.0741064405.61 schema:affiliation grid-institutes:None
204 schema:familyName Lu
205 schema:givenName ShengFu
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741064405.61
207 rdf:type schema:Person
208 sg:pub.10.1007/978-3-540-77028-2_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016250293
209 https://doi.org/10.1007/978-3-540-77028-2_12
210 rdf:type schema:CreativeWork
211 sg:pub.10.1038/nn987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048801087
212 https://doi.org/10.1038/nn987
213 rdf:type schema:CreativeWork
214 sg:pub.10.3758/bf03202506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007000251
215 https://doi.org/10.3758/bf03202506
216 rdf:type schema:CreativeWork
217 sg:pub.10.3758/bf03331976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084968677
218 https://doi.org/10.3758/bf03331976
219 rdf:type schema:CreativeWork
220 grid-institutes:None schema:alternateName Beijing Municipal Lab of Brain Informatics, 100124, Beijing, China
221 schema:name Beijing Municipal Lab of Brain Informatics, 100124, Beijing, China
222 The International WIC Institute, Beijing University of Technology, 100124, Beijing, China
223 rdf:type schema:Organization
224 grid-institutes:grid.147455.6 schema:alternateName Department of Psychology, Carnegie Mellon University, 15213, Pittsburgh, PA, USA
225 schema:name Beijing Municipal Lab of Brain Informatics, 100124, Beijing, China
226 Department of Psychology, Carnegie Mellon University, 15213, Pittsburgh, PA, USA
227 The International WIC Institute, Beijing University of Technology, 100124, Beijing, China
228 rdf:type schema:Organization
229 grid-institutes:grid.413259.8 schema:alternateName Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
230 schema:name Beijing Municipal Lab of Brain Informatics, 100124, Beijing, China
231 Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
232 rdf:type schema:Organization
233 grid-institutes:grid.444244.6 schema:alternateName Department of Life Science and Informatics, Maebashi Institute of Technology, 371-0816, Maebashi, Japan
234 schema:name Beijing Municipal Lab of Brain Informatics, 100124, Beijing, China
235 Department of Life Science and Informatics, Maebashi Institute of Technology, 371-0816, Maebashi, Japan
236 The International WIC Institute, Beijing University of Technology, 100124, Beijing, China
237 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...