Design of CuInS2 hollow nanostructures toward CO2 electroreduction View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2020-10-26

AUTHORS

Chaohua He, Sijia Chen, Ran Long, Li Song, Yujie Xiong

ABSTRACT

The sharp rise of CO2 in the atmosphere has become a potential threat to global climate, which results from the massive utilization of fossil fuel since the industry revolution. CO2 electroreduction provides us a new possibility of utilizing CO2 as a carbon feedstock for fuel and commercial chemicals generation. In this article, a new method is developed for synthesizing CuInS2 hollow nanostructures through the Kirkendall effect. The CuInS2 hollow nanostructures exhibit excellent catalytic activity for electrochemical reduction of CO2 with particular high selectivity, achieving high faradaic efficiency for HCOOH of 72.8% at −0.7 V. To elucidate the mechanisms, operando electrochemical Raman spectroscopy is employed to examine the CO2 reduction process. This work provides new insights into the design of hollow nanostructures toward electrocatalytic CO2 conversion and offers us an effective and reliable way for real-time investigation of electrochemical CO2 reduction reaction processes. More... »

PAGES

1721-1726

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11426-020-9853-3

DOI

http://dx.doi.org/10.1007/s11426-020-9853-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1132216047


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.511309.f", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Chaohua", 
        "id": "sg:person.015651272327.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015651272327.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.511309.f", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Sijia", 
        "id": "sg:person.014202772771.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014202772771.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.511309.f", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Long", 
        "givenName": "Ran", 
        "id": "sg:person.0640412546.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640412546.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.511309.f", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Song", 
        "givenName": "Li", 
        "id": "sg:person.01176070666.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176070666.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Energy, Hefei Comprehensive National Science Center, 230031, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.513034.0", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China", 
            "Institute of Energy, Hefei Comprehensive National Science Center, 230031, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiong", 
        "givenName": "Yujie", 
        "id": "sg:person.0600113217.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600113217.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/s41929-018-0084-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104468865", 
          "https://doi.org/10.1038/s41929-018-0084-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature16455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003650249", 
          "https://doi.org/10.1038/nature16455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:jach.0000004018.57792.b8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053095355", 
          "https://doi.org/10.1023/b:jach.0000004018.57792.b8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11426-017-9118-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092857070", 
          "https://doi.org/10.1007/s11426-017-9118-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11426-019-9474-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1116170354", 
          "https://doi.org/10.1007/s11426-019-9474-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-10-26", 
    "datePublishedReg": "2020-10-26", 
    "description": "The sharp rise of CO2 in the atmosphere has become a potential threat to global climate, which results from the massive utilization of fossil fuel since the industry revolution. CO2 electroreduction provides us a new possibility of utilizing CO2 as a carbon feedstock for fuel and commercial chemicals generation. In this article, a new method is developed for synthesizing CuInS2 hollow nanostructures through the Kirkendall effect. The CuInS2 hollow nanostructures exhibit excellent catalytic activity for electrochemical reduction of CO2 with particular high selectivity, achieving high faradaic efficiency for HCOOH of 72.8% at \u22120.7 V. To elucidate the mechanisms, operando electrochemical Raman spectroscopy is employed to examine the CO2 reduction process. This work provides new insights into the design of hollow nanostructures toward electrocatalytic CO2 conversion and offers us an effective and reliable way for real-time investigation of electrochemical CO2 reduction reaction processes.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11426-020-9853-3", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.9416742", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8158906", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1372722", 
        "issn": [
          "1674-7291", 
          "1869-1870"
        ], 
        "name": "Science China Chemistry", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "63"
      }
    ], 
    "keywords": [
      "hollow nanostructures", 
      "CO2 electroreduction", 
      "electrochemical Raman spectroscopy", 
      "excellent catalytic activity", 
      "electrocatalytic CO2 conversion", 
      "high Faradaic efficiency", 
      "CO2 reduction process", 
      "reduction reaction process", 
      "electrochemical reduction", 
      "Faradaic efficiency", 
      "catalytic activity", 
      "chemical generation", 
      "CO2 conversion", 
      "high selectivity", 
      "Raman spectroscopy", 
      "reduction process", 
      "reaction process", 
      "real-time investigation", 
      "Kirkendall effect", 
      "carbon feedstock", 
      "nanostructures", 
      "electroreduction", 
      "industry revolution", 
      "CO2", 
      "massive utilization", 
      "HCOOH", 
      "spectroscopy", 
      "selectivity", 
      "fossil fuels", 
      "new possibilities", 
      "fuel", 
      "conversion", 
      "new insights", 
      "feedstock", 
      "atmosphere", 
      "reliable way", 
      "new method", 
      "design", 
      "efficiency", 
      "process", 
      "utilization", 
      "activity", 
      "investigation", 
      "mechanism", 
      "reduction", 
      "generation", 
      "method", 
      "insights", 
      "work", 
      "potential threat", 
      "effect", 
      "possibility", 
      "global climate", 
      "sharp rise", 
      "way", 
      "rise", 
      "threat", 
      "revolution", 
      "article", 
      "climate"
    ], 
    "name": "Design of CuInS2 hollow nanostructures toward CO2 electroreduction", 
    "pagination": "1721-1726", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1132216047"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11426-020-9853-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11426-020-9853-3", 
      "https://app.dimensions.ai/details/publication/pub.1132216047"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_861.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11426-020-9853-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11426-020-9853-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11426-020-9853-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11426-020-9853-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11426-020-9853-3'


 

This table displays all metadata directly associated to this object as RDF triples.

173 TRIPLES      21 PREDICATES      88 URIs      75 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11426-020-9853-3 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N22292e80ef2c4cf1b4e08daee2de9c2e
4 schema:citation sg:pub.10.1007/s11426-017-9118-6
5 sg:pub.10.1007/s11426-019-9474-0
6 sg:pub.10.1023/b:jach.0000004018.57792.b8
7 sg:pub.10.1038/nature16455
8 sg:pub.10.1038/s41929-018-0084-7
9 schema:datePublished 2020-10-26
10 schema:datePublishedReg 2020-10-26
11 schema:description The sharp rise of CO2 in the atmosphere has become a potential threat to global climate, which results from the massive utilization of fossil fuel since the industry revolution. CO2 electroreduction provides us a new possibility of utilizing CO2 as a carbon feedstock for fuel and commercial chemicals generation. In this article, a new method is developed for synthesizing CuInS2 hollow nanostructures through the Kirkendall effect. The CuInS2 hollow nanostructures exhibit excellent catalytic activity for electrochemical reduction of CO2 with particular high selectivity, achieving high faradaic efficiency for HCOOH of 72.8% at −0.7 V. To elucidate the mechanisms, operando electrochemical Raman spectroscopy is employed to examine the CO2 reduction process. This work provides new insights into the design of hollow nanostructures toward electrocatalytic CO2 conversion and offers us an effective and reliable way for real-time investigation of electrochemical CO2 reduction reaction processes.
12 schema:genre article
13 schema:isAccessibleForFree false
14 schema:isPartOf N94093954ca7b41a495493c68ebf7cb41
15 Nade977fa9e39455c949eb44b191d9266
16 sg:journal.1372722
17 schema:keywords CO2
18 CO2 conversion
19 CO2 electroreduction
20 CO2 reduction process
21 Faradaic efficiency
22 HCOOH
23 Kirkendall effect
24 Raman spectroscopy
25 activity
26 article
27 atmosphere
28 carbon feedstock
29 catalytic activity
30 chemical generation
31 climate
32 conversion
33 design
34 effect
35 efficiency
36 electrocatalytic CO2 conversion
37 electrochemical Raman spectroscopy
38 electrochemical reduction
39 electroreduction
40 excellent catalytic activity
41 feedstock
42 fossil fuels
43 fuel
44 generation
45 global climate
46 high Faradaic efficiency
47 high selectivity
48 hollow nanostructures
49 industry revolution
50 insights
51 investigation
52 massive utilization
53 mechanism
54 method
55 nanostructures
56 new insights
57 new method
58 new possibilities
59 possibility
60 potential threat
61 process
62 reaction process
63 real-time investigation
64 reduction
65 reduction process
66 reduction reaction process
67 reliable way
68 revolution
69 rise
70 selectivity
71 sharp rise
72 spectroscopy
73 threat
74 utilization
75 way
76 work
77 schema:name Design of CuInS2 hollow nanostructures toward CO2 electroreduction
78 schema:pagination 1721-1726
79 schema:productId N4eadfd41f03146beb1eae43619a014ed
80 N78b15569a1464e5fb8fc6ddaa65d39ea
81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132216047
82 https://doi.org/10.1007/s11426-020-9853-3
83 schema:sdDatePublished 2022-12-01T06:41
84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
85 schema:sdPublisher Nd5de30d1def24631acb39b20178d20af
86 schema:url https://doi.org/10.1007/s11426-020-9853-3
87 sgo:license sg:explorer/license/
88 sgo:sdDataset articles
89 rdf:type schema:ScholarlyArticle
90 N22292e80ef2c4cf1b4e08daee2de9c2e rdf:first sg:person.015651272327.41
91 rdf:rest Ne24625575fc74f009f199c078f3a380c
92 N4eadfd41f03146beb1eae43619a014ed schema:name doi
93 schema:value 10.1007/s11426-020-9853-3
94 rdf:type schema:PropertyValue
95 N78b15569a1464e5fb8fc6ddaa65d39ea schema:name dimensions_id
96 schema:value pub.1132216047
97 rdf:type schema:PropertyValue
98 N94093954ca7b41a495493c68ebf7cb41 schema:issueNumber 12
99 rdf:type schema:PublicationIssue
100 Nade977fa9e39455c949eb44b191d9266 schema:volumeNumber 63
101 rdf:type schema:PublicationVolume
102 Nb99f0c3eb0114fea8fed3fe45e27265c rdf:first sg:person.0600113217.27
103 rdf:rest rdf:nil
104 Nb9b75546c9a1469f9a1408ebec4da99d rdf:first sg:person.0640412546.43
105 rdf:rest Nd05877d79c2f4d8da5cfea30a8431d3e
106 Nd05877d79c2f4d8da5cfea30a8431d3e rdf:first sg:person.01176070666.37
107 rdf:rest Nb99f0c3eb0114fea8fed3fe45e27265c
108 Nd5de30d1def24631acb39b20178d20af schema:name Springer Nature - SN SciGraph project
109 rdf:type schema:Organization
110 Ne24625575fc74f009f199c078f3a380c rdf:first sg:person.014202772771.39
111 rdf:rest Nb9b75546c9a1469f9a1408ebec4da99d
112 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
113 schema:name Chemical Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
116 schema:name Physical Chemistry (incl. Structural)
117 rdf:type schema:DefinedTerm
118 sg:grant.8158906 http://pending.schema.org/fundedItem sg:pub.10.1007/s11426-020-9853-3
119 rdf:type schema:MonetaryGrant
120 sg:grant.9416742 http://pending.schema.org/fundedItem sg:pub.10.1007/s11426-020-9853-3
121 rdf:type schema:MonetaryGrant
122 sg:journal.1372722 schema:issn 1674-7291
123 1869-1870
124 schema:name Science China Chemistry
125 schema:publisher Springer Nature
126 rdf:type schema:Periodical
127 sg:person.01176070666.37 schema:affiliation grid-institutes:grid.511309.f
128 schema:familyName Song
129 schema:givenName Li
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176070666.37
131 rdf:type schema:Person
132 sg:person.014202772771.39 schema:affiliation grid-institutes:grid.511309.f
133 schema:familyName Chen
134 schema:givenName Sijia
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014202772771.39
136 rdf:type schema:Person
137 sg:person.015651272327.41 schema:affiliation grid-institutes:grid.511309.f
138 schema:familyName He
139 schema:givenName Chaohua
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015651272327.41
141 rdf:type schema:Person
142 sg:person.0600113217.27 schema:affiliation grid-institutes:grid.513034.0
143 schema:familyName Xiong
144 schema:givenName Yujie
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600113217.27
146 rdf:type schema:Person
147 sg:person.0640412546.43 schema:affiliation grid-institutes:grid.511309.f
148 schema:familyName Long
149 schema:givenName Ran
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640412546.43
151 rdf:type schema:Person
152 sg:pub.10.1007/s11426-017-9118-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092857070
153 https://doi.org/10.1007/s11426-017-9118-6
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/s11426-019-9474-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1116170354
156 https://doi.org/10.1007/s11426-019-9474-0
157 rdf:type schema:CreativeWork
158 sg:pub.10.1023/b:jach.0000004018.57792.b8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053095355
159 https://doi.org/10.1023/b:jach.0000004018.57792.b8
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/nature16455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003650249
162 https://doi.org/10.1038/nature16455
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/s41929-018-0084-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104468865
165 https://doi.org/10.1038/s41929-018-0084-7
166 rdf:type schema:CreativeWork
167 grid-institutes:grid.511309.f schema:alternateName Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
168 schema:name Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
169 rdf:type schema:Organization
170 grid-institutes:grid.513034.0 schema:alternateName Institute of Energy, Hefei Comprehensive National Science Center, 230031, Hefei, China
171 schema:name Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
172 Institute of Energy, Hefei Comprehensive National Science Center, 230031, Hefei, China
173 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...