Layered intercalated functional materials based on efficient utilization of magnesium resources in China View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-07-31

AUTHORS

XiangYu Xu, YanJun Lin, David G. Evans, Xue Duan

ABSTRACT

Mg-based layered intercalated functional materials of the layered double hydroxide type are a significant class of magnesium compounds. Based on long-term studies of these materials in the State Key Laboratory of Chemical Resource Engineering in Beijing University of Chemical Technology, two principles of “using the intended application of a material as a guide to its structure design and synthesis process” and “the design of controlled intercalation processes in the light of future production processing requirements” have been developed. To achieve these objectives, the composition of the host layers and guest interlayer anions was tailored at the microlevel, while the mesostructure and macrostructure were controlled to fabricate different kinds of Mg-based layered intercalated functional materials. These materials have diverse applications in key areas such as catalysis, the environment, and construction, and as polymer additives. Therefore, China’s magnesium resources may be utilized more efficiently for the benefit of society. More... »

PAGES

1461-1469

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11426-010-4031-y

DOI

http://dx.doi.org/10.1007/s11426-010-4031-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022675976


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.48166.3d", 
          "name": [
            "State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "XiangYu", 
        "id": "sg:person.010317663573.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010317663573.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.48166.3d", 
          "name": [
            "State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "YanJun", 
        "id": "sg:person.012641012422.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012641012422.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.48166.3d", 
          "name": [
            "State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Evans", 
        "givenName": "David G.", 
        "id": "sg:person.015213331762.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015213331762.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.48166.3d", 
          "name": [
            "State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Duan", 
        "givenName": "Xue", 
        "id": "sg:person.01057615251.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057615251.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/430_007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045478125", 
          "https://doi.org/10.1007/430_007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03183673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049350946", 
          "https://doi.org/10.1007/bf03183673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/430_005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040536248", 
          "https://doi.org/10.1007/430_005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1360/982004-212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065071666", 
          "https://doi.org/10.1360/982004-212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/430_006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034433727", 
          "https://doi.org/10.1007/430_006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1346/ccmn.2003.0510510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013747639", 
          "https://doi.org/10.1346/ccmn.2003.0510510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1346/ccmn.2005.0530309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045206558", 
          "https://doi.org/10.1346/ccmn.2005.0530309"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-07-31", 
    "datePublishedReg": "2010-07-31", 
    "description": "Mg-based layered intercalated functional materials of the layered double hydroxide type are a significant class of magnesium compounds. Based on long-term studies of these materials in the State Key Laboratory of Chemical Resource Engineering in Beijing University of Chemical Technology, two principles of \u201cusing the intended application of a material as a guide to its structure design and synthesis process\u201d and \u201cthe design of controlled intercalation processes in the light of future production processing requirements\u201d have been developed. To achieve these objectives, the composition of the host layers and guest interlayer anions was tailored at the microlevel, while the mesostructure and macrostructure were controlled to fabricate different kinds of Mg-based layered intercalated functional materials. These materials have diverse applications in key areas such as catalysis, the environment, and construction, and as polymer additives. Therefore, China\u2019s magnesium resources may be utilized more efficiently for the benefit of society.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11426-010-4031-y", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1372722", 
        "issn": [
          "1674-7291", 
          "1869-1870"
        ], 
        "name": "Science China Chemistry", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "53"
      }
    ], 
    "keywords": [
      "functional materials", 
      "magnesium resources", 
      "interlayer anions", 
      "intercalation process", 
      "magnesium compounds", 
      "chemical technology", 
      "host layers", 
      "polymer additives", 
      "synthesis process", 
      "hydroxide type", 
      "structure design", 
      "diverse applications", 
      "State Key Laboratory", 
      "resources engineering", 
      "layered", 
      "intended application", 
      "materials", 
      "processing requirements", 
      "significant class", 
      "Key Laboratory", 
      "catalysis", 
      "anions", 
      "efficient utilization", 
      "mesostructure", 
      "compounds", 
      "additives", 
      "design", 
      "applications", 
      "Mg", 
      "layer", 
      "macrostructure", 
      "engineering", 
      "process", 
      "composition", 
      "different kinds", 
      "technology", 
      "Beijing University", 
      "requirements", 
      "light", 
      "microlevel", 
      "construction", 
      "utilization", 
      "kind", 
      "principles", 
      "environment", 
      "laboratory", 
      "area", 
      "class", 
      "resources", 
      "types", 
      "objective", 
      "benefit of society", 
      "key areas", 
      "study", 
      "guide", 
      "benefits", 
      "China", 
      "University", 
      "long-term studies", 
      "society"
    ], 
    "name": "Layered intercalated functional materials based on efficient utilization of magnesium resources in China", 
    "pagination": "1461-1469", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022675976"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11426-010-4031-y"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11426-010-4031-y", 
      "https://app.dimensions.ai/details/publication/pub.1022675976"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_517.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11426-010-4031-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11426-010-4031-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11426-010-4031-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11426-010-4031-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11426-010-4031-y'


 

This table displays all metadata directly associated to this object as RDF triples.

166 TRIPLES      21 PREDICATES      91 URIs      76 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11426-010-4031-y schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nbaca420c7d304c41b5ef09d63b1788b6
4 schema:citation sg:pub.10.1007/430_005
5 sg:pub.10.1007/430_006
6 sg:pub.10.1007/430_007
7 sg:pub.10.1007/bf03183673
8 sg:pub.10.1346/ccmn.2003.0510510
9 sg:pub.10.1346/ccmn.2005.0530309
10 sg:pub.10.1360/982004-212
11 schema:datePublished 2010-07-31
12 schema:datePublishedReg 2010-07-31
13 schema:description Mg-based layered intercalated functional materials of the layered double hydroxide type are a significant class of magnesium compounds. Based on long-term studies of these materials in the State Key Laboratory of Chemical Resource Engineering in Beijing University of Chemical Technology, two principles of “using the intended application of a material as a guide to its structure design and synthesis process” and “the design of controlled intercalation processes in the light of future production processing requirements” have been developed. To achieve these objectives, the composition of the host layers and guest interlayer anions was tailored at the microlevel, while the mesostructure and macrostructure were controlled to fabricate different kinds of Mg-based layered intercalated functional materials. These materials have diverse applications in key areas such as catalysis, the environment, and construction, and as polymer additives. Therefore, China’s magnesium resources may be utilized more efficiently for the benefit of society.
14 schema:genre article
15 schema:isAccessibleForFree false
16 schema:isPartOf N5928b7e96991492e90fa42bcf0a69b95
17 N804c62be887b401990f4144dd790b792
18 sg:journal.1372722
19 schema:keywords Beijing University
20 China
21 Key Laboratory
22 Mg
23 State Key Laboratory
24 University
25 additives
26 anions
27 applications
28 area
29 benefit of society
30 benefits
31 catalysis
32 chemical technology
33 class
34 composition
35 compounds
36 construction
37 design
38 different kinds
39 diverse applications
40 efficient utilization
41 engineering
42 environment
43 functional materials
44 guide
45 host layers
46 hydroxide type
47 intended application
48 intercalation process
49 interlayer anions
50 key areas
51 kind
52 laboratory
53 layer
54 layered
55 light
56 long-term studies
57 macrostructure
58 magnesium compounds
59 magnesium resources
60 materials
61 mesostructure
62 microlevel
63 objective
64 polymer additives
65 principles
66 process
67 processing requirements
68 requirements
69 resources
70 resources engineering
71 significant class
72 society
73 structure design
74 study
75 synthesis process
76 technology
77 types
78 utilization
79 schema:name Layered intercalated functional materials based on efficient utilization of magnesium resources in China
80 schema:pagination 1461-1469
81 schema:productId Naf57489b67d84e41a3e674602d02a20d
82 Nd78ddc50bac9429587269c7daf0c2623
83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022675976
84 https://doi.org/10.1007/s11426-010-4031-y
85 schema:sdDatePublished 2022-12-01T06:28
86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
87 schema:sdPublisher N438a2653a32a43e7bae40b028abd5fb6
88 schema:url https://doi.org/10.1007/s11426-010-4031-y
89 sgo:license sg:explorer/license/
90 sgo:sdDataset articles
91 rdf:type schema:ScholarlyArticle
92 N3c83ccd7248e4fa7918e3084da0abc2f rdf:first sg:person.015213331762.16
93 rdf:rest N52ad6c02fa03416f997fa4af1e3c802b
94 N438a2653a32a43e7bae40b028abd5fb6 schema:name Springer Nature - SN SciGraph project
95 rdf:type schema:Organization
96 N4b25403fdfd04d1c8489f59583e4c295 rdf:first sg:person.012641012422.37
97 rdf:rest N3c83ccd7248e4fa7918e3084da0abc2f
98 N52ad6c02fa03416f997fa4af1e3c802b rdf:first sg:person.01057615251.43
99 rdf:rest rdf:nil
100 N5928b7e96991492e90fa42bcf0a69b95 schema:volumeNumber 53
101 rdf:type schema:PublicationVolume
102 N804c62be887b401990f4144dd790b792 schema:issueNumber 7
103 rdf:type schema:PublicationIssue
104 Naf57489b67d84e41a3e674602d02a20d schema:name dimensions_id
105 schema:value pub.1022675976
106 rdf:type schema:PropertyValue
107 Nbaca420c7d304c41b5ef09d63b1788b6 rdf:first sg:person.010317663573.64
108 rdf:rest N4b25403fdfd04d1c8489f59583e4c295
109 Nd78ddc50bac9429587269c7daf0c2623 schema:name doi
110 schema:value 10.1007/s11426-010-4031-y
111 rdf:type schema:PropertyValue
112 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
113 schema:name Chemical Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
116 schema:name Physical Chemistry (incl. Structural)
117 rdf:type schema:DefinedTerm
118 sg:journal.1372722 schema:issn 1674-7291
119 1869-1870
120 schema:name Science China Chemistry
121 schema:publisher Springer Nature
122 rdf:type schema:Periodical
123 sg:person.010317663573.64 schema:affiliation grid-institutes:grid.48166.3d
124 schema:familyName Xu
125 schema:givenName XiangYu
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010317663573.64
127 rdf:type schema:Person
128 sg:person.01057615251.43 schema:affiliation grid-institutes:grid.48166.3d
129 schema:familyName Duan
130 schema:givenName Xue
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057615251.43
132 rdf:type schema:Person
133 sg:person.012641012422.37 schema:affiliation grid-institutes:grid.48166.3d
134 schema:familyName Lin
135 schema:givenName YanJun
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012641012422.37
137 rdf:type schema:Person
138 sg:person.015213331762.16 schema:affiliation grid-institutes:grid.48166.3d
139 schema:familyName Evans
140 schema:givenName David G.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015213331762.16
142 rdf:type schema:Person
143 sg:pub.10.1007/430_005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040536248
144 https://doi.org/10.1007/430_005
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/430_006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034433727
147 https://doi.org/10.1007/430_006
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/430_007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045478125
150 https://doi.org/10.1007/430_007
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/bf03183673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049350946
153 https://doi.org/10.1007/bf03183673
154 rdf:type schema:CreativeWork
155 sg:pub.10.1346/ccmn.2003.0510510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013747639
156 https://doi.org/10.1346/ccmn.2003.0510510
157 rdf:type schema:CreativeWork
158 sg:pub.10.1346/ccmn.2005.0530309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045206558
159 https://doi.org/10.1346/ccmn.2005.0530309
160 rdf:type schema:CreativeWork
161 sg:pub.10.1360/982004-212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065071666
162 https://doi.org/10.1360/982004-212
163 rdf:type schema:CreativeWork
164 grid-institutes:grid.48166.3d schema:alternateName State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
165 schema:name State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
166 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...