Construction and evaluation of a novel end-column amperometric detection system for electrophoresis microchips View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-01

AUTHORS

ZhiFeng Chen, YunHua Gao, Li Wang, XiaoGang Chu

ABSTRACT

A set of integrated end-column amperometric detection system has been developed, onto which an electrophoresis microchip can be conveniently integrated. Finely machined by a piece of transparent organic glass, the system consists of an electrophoresis microchip platform and an amperometric detection reservoir, in which the microchip can be fixed onto the platform by microchip grooves and with stainless steel fixture. Each detection electrode can be directly fixed in the amperometric detection reservoir by screws and nuts. With dopamine as the model analyte, we take platinum disc electrodes with different diameters of 100 μm, 300 μm and 500 μm and a carbon fiber electrode with the diameter of 240 μm as the working electrode, all of which accomplish sensitive detection. The detection parameters of the system are optimized with the carbon fiber electrode. The detection results show that in the electrochemical cleaning procedure, the relative deviations of 3.2% and 0.5% for the peak current and retention time, respectively, can be obtained for the successive detections of 100 μM dopamine, and the limit of detection for dopamine can reach 0.4 μM (S/N = 3). This system is small, but its performance of detection is stable and sensitive, and the replacement of its working electrodes is convenient, so it is very suitable as a universal platform of end-column amperometric detection for electrophoresis microchips. More... »

PAGES

250-256

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11426-010-0006-2

DOI

http://dx.doi.org/10.1007/s11426-010-0006-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018177160


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Analytical Chemistry", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Inspection and Quarantine, 100123, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.418544.8", 
          "name": [
            "Chinese Academy of Inspection and Quarantine, 100123, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "ZhiFeng", 
        "id": "sg:person.01037647056.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037647056.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.458502.e", 
          "name": [
            "Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gao", 
        "givenName": "YunHua", 
        "id": "sg:person.013607405115.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013607405115.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Institute of Labour Protection, 100054, Beijing, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Beijing Institute of Labour Protection, 100054, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Li", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Inspection and Quarantine, 100123, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.418544.8", 
          "name": [
            "Chinese Academy of Inspection and Quarantine, 100123, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chu", 
        "givenName": "XiaoGang", 
        "id": "sg:person.01107642060.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107642060.23"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2010-01", 
    "datePublishedReg": "2010-01-01", 
    "description": "A set of integrated end-column amperometric detection system has been developed, onto which an electrophoresis microchip can be conveniently integrated. Finely machined by a piece of transparent organic glass, the system consists of an electrophoresis microchip platform and an amperometric detection reservoir, in which the microchip can be fixed onto the platform by microchip grooves and with stainless steel fixture. Each detection electrode can be directly fixed in the amperometric detection reservoir by screws and nuts. With dopamine as the model analyte, we take platinum disc electrodes with different diameters of 100 \u03bcm, 300 \u03bcm and 500 \u03bcm and a carbon fiber electrode with the diameter of 240 \u03bcm as the working electrode, all of which accomplish sensitive detection. The detection parameters of the system are optimized with the carbon fiber electrode. The detection results show that in the electrochemical cleaning procedure, the relative deviations of 3.2% and 0.5% for the peak current and retention time, respectively, can be obtained for the successive detections of 100 \u03bcM dopamine, and the limit of detection for dopamine can reach 0.4 \u03bcM (S/N = 3). This system is small, but its performance of detection is stable and sensitive, and the replacement of its working electrodes is convenient, so it is very suitable as a universal platform of end-column amperometric detection for electrophoresis microchips.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11426-010-0006-2", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1372722", 
        "issn": [
          "1674-7291", 
          "1869-1870"
        ], 
        "name": "Science China Chemistry", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "53"
      }
    ], 
    "keywords": [
      "amperometric detection system", 
      "electrophoresis microchip", 
      "carbon fiber electrodes", 
      "detection reservoir", 
      "fiber electrodes", 
      "platinum disk electrode", 
      "limit of detection", 
      "end-column amperometric detection", 
      "disk electrode", 
      "amperometric detection", 
      "model analyte", 
      "sensitive detection", 
      "microchip platform", 
      "detection electrode", 
      "organic glasses", 
      "electrode", 
      "transparent organic glass", 
      "cleaning procedures", 
      "universal platform", 
      "retention time", 
      "microchip", 
      "analytes", 
      "detection parameters", 
      "successive detection", 
      "different diameters", 
      "detection", 
      "detection system", 
      "\u03bcM", 
      "relative deviation", 
      "glass", 
      "diameter", 
      "limit", 
      "peak", 
      "dopamine", 
      "platform", 
      "system", 
      "groove", 
      "deviation", 
      "parameters", 
      "performance", 
      "reservoir", 
      "replacement", 
      "procedure", 
      "time", 
      "detection results", 
      "results", 
      "construction", 
      "evaluation", 
      "set", 
      "pieces", 
      "nuts", 
      "performance of detection", 
      "fixture", 
      "screws", 
      "integrated end-column amperometric detection system", 
      "end-column amperometric detection system", 
      "electrophoresis microchip platform", 
      "amperometric detection reservoir", 
      "microchip grooves", 
      "stainless steel fixture", 
      "steel fixture", 
      "electrochemical cleaning procedure", 
      "novel end-column amperometric detection system"
    ], 
    "name": "Construction and evaluation of a novel end-column amperometric detection system for electrophoresis microchips", 
    "pagination": "250-256", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018177160"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11426-010-0006-2"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11426-010-0006-2", 
      "https://app.dimensions.ai/details/publication/pub.1018177160"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_513.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11426-010-0006-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11426-010-0006-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11426-010-0006-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11426-010-0006-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11426-010-0006-2'


 

This table displays all metadata directly associated to this object as RDF triples.

147 TRIPLES      21 PREDICATES      89 URIs      81 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11426-010-0006-2 schema:about anzsrc-for:03
2 anzsrc-for:0301
3 schema:author N1b152dbef1e1448eaa01cee58667794a
4 schema:datePublished 2010-01
5 schema:datePublishedReg 2010-01-01
6 schema:description A set of integrated end-column amperometric detection system has been developed, onto which an electrophoresis microchip can be conveniently integrated. Finely machined by a piece of transparent organic glass, the system consists of an electrophoresis microchip platform and an amperometric detection reservoir, in which the microchip can be fixed onto the platform by microchip grooves and with stainless steel fixture. Each detection electrode can be directly fixed in the amperometric detection reservoir by screws and nuts. With dopamine as the model analyte, we take platinum disc electrodes with different diameters of 100 μm, 300 μm and 500 μm and a carbon fiber electrode with the diameter of 240 μm as the working electrode, all of which accomplish sensitive detection. The detection parameters of the system are optimized with the carbon fiber electrode. The detection results show that in the electrochemical cleaning procedure, the relative deviations of 3.2% and 0.5% for the peak current and retention time, respectively, can be obtained for the successive detections of 100 μM dopamine, and the limit of detection for dopamine can reach 0.4 μM (S/N = 3). This system is small, but its performance of detection is stable and sensitive, and the replacement of its working electrodes is convenient, so it is very suitable as a universal platform of end-column amperometric detection for electrophoresis microchips.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf Naf7638fa037d4595ae1f748c536674c0
11 Nbb1a6bcb98d64a468869de02827720ac
12 sg:journal.1372722
13 schema:keywords amperometric detection
14 amperometric detection reservoir
15 amperometric detection system
16 analytes
17 carbon fiber electrodes
18 cleaning procedures
19 construction
20 detection
21 detection electrode
22 detection parameters
23 detection reservoir
24 detection results
25 detection system
26 deviation
27 diameter
28 different diameters
29 disk electrode
30 dopamine
31 electrochemical cleaning procedure
32 electrode
33 electrophoresis microchip
34 electrophoresis microchip platform
35 end-column amperometric detection
36 end-column amperometric detection system
37 evaluation
38 fiber electrodes
39 fixture
40 glass
41 groove
42 integrated end-column amperometric detection system
43 limit
44 limit of detection
45 microchip
46 microchip grooves
47 microchip platform
48 model analyte
49 novel end-column amperometric detection system
50 nuts
51 organic glasses
52 parameters
53 peak
54 performance
55 performance of detection
56 pieces
57 platform
58 platinum disk electrode
59 procedure
60 relative deviation
61 replacement
62 reservoir
63 results
64 retention time
65 screws
66 sensitive detection
67 set
68 stainless steel fixture
69 steel fixture
70 successive detection
71 system
72 time
73 transparent organic glass
74 universal platform
75 μM
76 schema:name Construction and evaluation of a novel end-column amperometric detection system for electrophoresis microchips
77 schema:pagination 250-256
78 schema:productId Nef80839bbcdc4cc88b78ccc4cd7e9e3a
79 Nf51868a835d849aaa37484fca4f80a84
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018177160
81 https://doi.org/10.1007/s11426-010-0006-2
82 schema:sdDatePublished 2021-11-01T18:15
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher N1adcf2ed933f42da941059dc0a0b7609
85 schema:url https://doi.org/10.1007/s11426-010-0006-2
86 sgo:license sg:explorer/license/
87 sgo:sdDataset articles
88 rdf:type schema:ScholarlyArticle
89 N1adcf2ed933f42da941059dc0a0b7609 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 N1b152dbef1e1448eaa01cee58667794a rdf:first sg:person.01037647056.29
92 rdf:rest N505cb78fcc6c4ae1aadef687fe8ca263
93 N4a68f85372b446949de121faf9f6dc3b schema:affiliation grid-institutes:None
94 schema:familyName Wang
95 schema:givenName Li
96 rdf:type schema:Person
97 N505cb78fcc6c4ae1aadef687fe8ca263 rdf:first sg:person.013607405115.40
98 rdf:rest N62e235e28bf548c3882bc0a1578cc142
99 N62e235e28bf548c3882bc0a1578cc142 rdf:first N4a68f85372b446949de121faf9f6dc3b
100 rdf:rest Nc08fc291a7014c4cb5314f562d14f9a7
101 Naf7638fa037d4595ae1f748c536674c0 schema:issueNumber 1
102 rdf:type schema:PublicationIssue
103 Nbb1a6bcb98d64a468869de02827720ac schema:volumeNumber 53
104 rdf:type schema:PublicationVolume
105 Nc08fc291a7014c4cb5314f562d14f9a7 rdf:first sg:person.01107642060.23
106 rdf:rest rdf:nil
107 Nef80839bbcdc4cc88b78ccc4cd7e9e3a schema:name dimensions_id
108 schema:value pub.1018177160
109 rdf:type schema:PropertyValue
110 Nf51868a835d849aaa37484fca4f80a84 schema:name doi
111 schema:value 10.1007/s11426-010-0006-2
112 rdf:type schema:PropertyValue
113 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
114 schema:name Chemical Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
117 schema:name Analytical Chemistry
118 rdf:type schema:DefinedTerm
119 sg:journal.1372722 schema:issn 1674-7291
120 1869-1870
121 schema:name Science China Chemistry
122 schema:publisher Springer Nature
123 rdf:type schema:Periodical
124 sg:person.01037647056.29 schema:affiliation grid-institutes:grid.418544.8
125 schema:familyName Chen
126 schema:givenName ZhiFeng
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037647056.29
128 rdf:type schema:Person
129 sg:person.01107642060.23 schema:affiliation grid-institutes:grid.418544.8
130 schema:familyName Chu
131 schema:givenName XiaoGang
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107642060.23
133 rdf:type schema:Person
134 sg:person.013607405115.40 schema:affiliation grid-institutes:grid.458502.e
135 schema:familyName Gao
136 schema:givenName YunHua
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013607405115.40
138 rdf:type schema:Person
139 grid-institutes:None schema:alternateName Beijing Institute of Labour Protection, 100054, Beijing, China
140 schema:name Beijing Institute of Labour Protection, 100054, Beijing, China
141 rdf:type schema:Organization
142 grid-institutes:grid.418544.8 schema:alternateName Chinese Academy of Inspection and Quarantine, 100123, Beijing, China
143 schema:name Chinese Academy of Inspection and Quarantine, 100123, Beijing, China
144 rdf:type schema:Organization
145 grid-institutes:grid.458502.e schema:alternateName Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
146 schema:name Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
147 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...