Rank one Eisenstein cohomology of local systems on the moduli space of abelian varieties View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-01-18

AUTHORS

Gerard van der Geer

ABSTRACT

We give a formula for the Eisenstein cohomology of local systems on the partial compactification of the moduli of principally polarized abelian varieties given by rank 1 degenerations.

PAGES

1621-1634

References to SciGraph publications

  • 1993. Eisensteinkohomologie und die Konstruktion gemischter Motive in NONE
  • 2009. Cycle Classes of the E-O Stratification on the Moduli of Abelian Varieties in ALGEBRA, ARITHMETIC, AND GEOMETRY
  • 1990-12. Motives for modular forms in INVENTIONES MATHEMATICAE
  • 1990. Degeneration of Abelian Varieties in NONE
  • 1971. Formes modulaires et représentations e-adiques in SÉMINAIRE BOURBAKI VOL. 1968/69 EXPOSÉS 347-363
  • 1992-03. On ℓ-adic sheaves on Shimura varieties and their higher direct images in the Baily-Borel compactification in MATHEMATISCHE ANNALEN
  • 1987-02. Eisenstein cohomology of arithmetic groups. The case GL2 in INVENTIONES MATHEMATICAE
  • 1983. On the cohomology of locally symmetric hermitian spaces in SÉMINAIRE D’ALGÈBRE PAUL DUBREIL ET MARIE-PAULE MALLIAVIN
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11425-010-4159-4

    DOI

    http://dx.doi.org/10.1007/s11425-010-4159-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1018176291


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "affiliation": {
              "alternateName": "Korteweg-de Vries Instituut, Universiteit van Amsterdam, Postbus 94248, 1090 GE, Amsterdam, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.7177.6", 
              "name": [
                "Korteweg-de Vries Instituut, Universiteit van Amsterdam, Postbus 94248, 1090 GE, Amsterdam, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "van der Geer", 
            "givenName": "Gerard", 
            "id": "sg:person.011551332252.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011551332252.27"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bfb0058810", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018918854", 
              "https://doi.org/10.1007/bfb0058810"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-8176-4745-2_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049310473", 
              "https://doi.org/10.1007/978-0-8176-4745-2_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0098927", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013969838", 
              "https://doi.org/10.1007/bfb0098927"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01444618", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045364713", 
              "https://doi.org/10.1007/bf01444618"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01404673", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039642990", 
              "https://doi.org/10.1007/bf01404673"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0090305", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018160239", 
              "https://doi.org/10.1007/bfb0090305"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-02632-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047933987", 
              "https://doi.org/10.1007/978-3-662-02632-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01231194", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039347730", 
              "https://doi.org/10.1007/bf01231194"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-01-18", 
        "datePublishedReg": "2011-01-18", 
        "description": "We give a formula for the Eisenstein cohomology of local systems on the partial compactification of the moduli of principally polarized abelian varieties given by rank 1 degenerations.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11425-010-4159-4", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1048022", 
            "issn": [
              "1674-7283", 
              "1869-1862"
            ], 
            "name": "Science China Mathematics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "54"
          }
        ], 
        "keywords": [
          "abelian varieties", 
          "partial compactification", 
          "cohomology", 
          "local systems", 
          "moduli space", 
          "Eisenstein cohomology", 
          "compactification", 
          "formula", 
          "system", 
          "space", 
          "variety", 
          "modulus", 
          "degeneration", 
          "rank 1 degenerations"
        ], 
        "name": "Rank one Eisenstein cohomology of local systems on the moduli space of abelian varieties", 
        "pagination": "1621-1634", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1018176291"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11425-010-4159-4"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11425-010-4159-4", 
          "https://app.dimensions.ai/details/publication/pub.1018176291"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:26", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_546.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11425-010-4159-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11425-010-4159-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11425-010-4159-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11425-010-4159-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11425-010-4159-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    96 TRIPLES      21 PREDICATES      45 URIs      31 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11425-010-4159-4 schema:author Nbd39c66d4612428f89d39fb053a3f9fd
    2 schema:citation sg:pub.10.1007/978-0-8176-4745-2_13
    3 sg:pub.10.1007/978-3-662-02632-8
    4 sg:pub.10.1007/bf01231194
    5 sg:pub.10.1007/bf01404673
    6 sg:pub.10.1007/bf01444618
    7 sg:pub.10.1007/bfb0058810
    8 sg:pub.10.1007/bfb0090305
    9 sg:pub.10.1007/bfb0098927
    10 schema:datePublished 2011-01-18
    11 schema:datePublishedReg 2011-01-18
    12 schema:description We give a formula for the Eisenstein cohomology of local systems on the partial compactification of the moduli of principally polarized abelian varieties given by rank 1 degenerations.
    13 schema:genre article
    14 schema:inLanguage en
    15 schema:isAccessibleForFree true
    16 schema:isPartOf N107f2ad8815940258dd1e2a28baa5419
    17 N905e5f1c09854c2189128e3d035d1b46
    18 sg:journal.1048022
    19 schema:keywords Eisenstein cohomology
    20 abelian varieties
    21 cohomology
    22 compactification
    23 degeneration
    24 formula
    25 local systems
    26 moduli space
    27 modulus
    28 partial compactification
    29 rank 1 degenerations
    30 space
    31 system
    32 variety
    33 schema:name Rank one Eisenstein cohomology of local systems on the moduli space of abelian varieties
    34 schema:pagination 1621-1634
    35 schema:productId Nbd6d9520e8bf485fa885ba6a46b2bfc2
    36 Ncf78a1665c2c421ca16541eee6d6f12b
    37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018176291
    38 https://doi.org/10.1007/s11425-010-4159-4
    39 schema:sdDatePublished 2022-01-01T18:26
    40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    41 schema:sdPublisher Nb89f244add2943cd9b846b3057265ae1
    42 schema:url https://doi.org/10.1007/s11425-010-4159-4
    43 sgo:license sg:explorer/license/
    44 sgo:sdDataset articles
    45 rdf:type schema:ScholarlyArticle
    46 N107f2ad8815940258dd1e2a28baa5419 schema:volumeNumber 54
    47 rdf:type schema:PublicationVolume
    48 N905e5f1c09854c2189128e3d035d1b46 schema:issueNumber 8
    49 rdf:type schema:PublicationIssue
    50 Nb89f244add2943cd9b846b3057265ae1 schema:name Springer Nature - SN SciGraph project
    51 rdf:type schema:Organization
    52 Nbd39c66d4612428f89d39fb053a3f9fd rdf:first sg:person.011551332252.27
    53 rdf:rest rdf:nil
    54 Nbd6d9520e8bf485fa885ba6a46b2bfc2 schema:name doi
    55 schema:value 10.1007/s11425-010-4159-4
    56 rdf:type schema:PropertyValue
    57 Ncf78a1665c2c421ca16541eee6d6f12b schema:name dimensions_id
    58 schema:value pub.1018176291
    59 rdf:type schema:PropertyValue
    60 sg:journal.1048022 schema:issn 1674-7283
    61 1869-1862
    62 schema:name Science China Mathematics
    63 schema:publisher Springer Nature
    64 rdf:type schema:Periodical
    65 sg:person.011551332252.27 schema:affiliation grid-institutes:grid.7177.6
    66 schema:familyName van der Geer
    67 schema:givenName Gerard
    68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011551332252.27
    69 rdf:type schema:Person
    70 sg:pub.10.1007/978-0-8176-4745-2_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049310473
    71 https://doi.org/10.1007/978-0-8176-4745-2_13
    72 rdf:type schema:CreativeWork
    73 sg:pub.10.1007/978-3-662-02632-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047933987
    74 https://doi.org/10.1007/978-3-662-02632-8
    75 rdf:type schema:CreativeWork
    76 sg:pub.10.1007/bf01231194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039347730
    77 https://doi.org/10.1007/bf01231194
    78 rdf:type schema:CreativeWork
    79 sg:pub.10.1007/bf01404673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039642990
    80 https://doi.org/10.1007/bf01404673
    81 rdf:type schema:CreativeWork
    82 sg:pub.10.1007/bf01444618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045364713
    83 https://doi.org/10.1007/bf01444618
    84 rdf:type schema:CreativeWork
    85 sg:pub.10.1007/bfb0058810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018918854
    86 https://doi.org/10.1007/bfb0058810
    87 rdf:type schema:CreativeWork
    88 sg:pub.10.1007/bfb0090305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018160239
    89 https://doi.org/10.1007/bfb0090305
    90 rdf:type schema:CreativeWork
    91 sg:pub.10.1007/bfb0098927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013969838
    92 https://doi.org/10.1007/bfb0098927
    93 rdf:type schema:CreativeWork
    94 grid-institutes:grid.7177.6 schema:alternateName Korteweg-de Vries Instituut, Universiteit van Amsterdam, Postbus 94248, 1090 GE, Amsterdam, The Netherlands
    95 schema:name Korteweg-de Vries Instituut, Universiteit van Amsterdam, Postbus 94248, 1090 GE, Amsterdam, The Netherlands
    96 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...