Rank one Eisenstein cohomology of local systems on the moduli space of abelian varieties View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-01-18

AUTHORS

Gerard van der Geer

ABSTRACT

We give a formula for the Eisenstein cohomology of local systems on the partial compactification of the moduli of principally polarized abelian varieties given by rank 1 degenerations.

PAGES

1621-1634

References to SciGraph publications

  • 1993. Eisensteinkohomologie und die Konstruktion gemischter Motive in NONE
  • 2009. Cycle Classes of the E-O Stratification on the Moduli of Abelian Varieties in ALGEBRA, ARITHMETIC, AND GEOMETRY
  • 1990-12. Motives for modular forms in INVENTIONES MATHEMATICAE
  • 1990. Degeneration of Abelian Varieties in NONE
  • 1971. Formes modulaires et représentations e-adiques in SÉMINAIRE BOURBAKI VOL. 1968/69 EXPOSÉS 347-363
  • 1992-03. On ℓ-adic sheaves on Shimura varieties and their higher direct images in the Baily-Borel compactification in MATHEMATISCHE ANNALEN
  • 1987-02. Eisenstein cohomology of arithmetic groups. The case GL2 in INVENTIONES MATHEMATICAE
  • 1983. On the cohomology of locally symmetric hermitian spaces in SÉMINAIRE D’ALGÈBRE PAUL DUBREIL ET MARIE-PAULE MALLIAVIN
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11425-010-4159-4

    DOI

    http://dx.doi.org/10.1007/s11425-010-4159-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1018176291


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "affiliation": {
              "alternateName": "Korteweg-de Vries Instituut, Universiteit van Amsterdam, Postbus 94248, 1090 GE, Amsterdam, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.7177.6", 
              "name": [
                "Korteweg-de Vries Instituut, Universiteit van Amsterdam, Postbus 94248, 1090 GE, Amsterdam, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "van der Geer", 
            "givenName": "Gerard", 
            "id": "sg:person.011551332252.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011551332252.27"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bfb0098927", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013969838", 
              "https://doi.org/10.1007/bfb0098927"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0090305", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018160239", 
              "https://doi.org/10.1007/bfb0090305"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01404673", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039642990", 
              "https://doi.org/10.1007/bf01404673"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0058810", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018918854", 
              "https://doi.org/10.1007/bfb0058810"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01231194", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039347730", 
              "https://doi.org/10.1007/bf01231194"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-02632-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047933987", 
              "https://doi.org/10.1007/978-3-662-02632-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01444618", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045364713", 
              "https://doi.org/10.1007/bf01444618"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-8176-4745-2_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049310473", 
              "https://doi.org/10.1007/978-0-8176-4745-2_13"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-01-18", 
        "datePublishedReg": "2011-01-18", 
        "description": "We give a formula for the Eisenstein cohomology of local systems on the partial compactification of the moduli of principally polarized abelian varieties given by rank 1 degenerations.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11425-010-4159-4", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1048022", 
            "issn": [
              "1674-7283", 
              "1869-1862"
            ], 
            "name": "Science China Mathematics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "54"
          }
        ], 
        "keywords": [
          "abelian varieties", 
          "partial compactification", 
          "cohomology", 
          "local systems", 
          "moduli space", 
          "Eisenstein cohomology", 
          "compactification", 
          "formula", 
          "system", 
          "space", 
          "variety", 
          "modulus", 
          "degeneration", 
          "rank 1 degenerations"
        ], 
        "name": "Rank one Eisenstein cohomology of local systems on the moduli space of abelian varieties", 
        "pagination": "1621-1634", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1018176291"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11425-010-4159-4"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11425-010-4159-4", 
          "https://app.dimensions.ai/details/publication/pub.1018176291"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:26", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_551.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11425-010-4159-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11425-010-4159-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11425-010-4159-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11425-010-4159-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11425-010-4159-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    96 TRIPLES      21 PREDICATES      45 URIs      31 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11425-010-4159-4 schema:author N00e23b8c37d243bb94ec8604fa27ddd4
    2 schema:citation sg:pub.10.1007/978-0-8176-4745-2_13
    3 sg:pub.10.1007/978-3-662-02632-8
    4 sg:pub.10.1007/bf01231194
    5 sg:pub.10.1007/bf01404673
    6 sg:pub.10.1007/bf01444618
    7 sg:pub.10.1007/bfb0058810
    8 sg:pub.10.1007/bfb0090305
    9 sg:pub.10.1007/bfb0098927
    10 schema:datePublished 2011-01-18
    11 schema:datePublishedReg 2011-01-18
    12 schema:description We give a formula for the Eisenstein cohomology of local systems on the partial compactification of the moduli of principally polarized abelian varieties given by rank 1 degenerations.
    13 schema:genre article
    14 schema:inLanguage en
    15 schema:isAccessibleForFree true
    16 schema:isPartOf N0e6577916d8740e7a21eeb6da3890d32
    17 Nf503c796a2ab45fdaa04ebffb3a80be2
    18 sg:journal.1048022
    19 schema:keywords Eisenstein cohomology
    20 abelian varieties
    21 cohomology
    22 compactification
    23 degeneration
    24 formula
    25 local systems
    26 moduli space
    27 modulus
    28 partial compactification
    29 rank 1 degenerations
    30 space
    31 system
    32 variety
    33 schema:name Rank one Eisenstein cohomology of local systems on the moduli space of abelian varieties
    34 schema:pagination 1621-1634
    35 schema:productId N48184e096bfc43ca929e69285849003d
    36 Nc5822abedd374f2fa2dd0eb1e7de5d83
    37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018176291
    38 https://doi.org/10.1007/s11425-010-4159-4
    39 schema:sdDatePublished 2021-12-01T19:26
    40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    41 schema:sdPublisher Nbd9b3aebbc8a46d9b435f64cea72523a
    42 schema:url https://doi.org/10.1007/s11425-010-4159-4
    43 sgo:license sg:explorer/license/
    44 sgo:sdDataset articles
    45 rdf:type schema:ScholarlyArticle
    46 N00e23b8c37d243bb94ec8604fa27ddd4 rdf:first sg:person.011551332252.27
    47 rdf:rest rdf:nil
    48 N0e6577916d8740e7a21eeb6da3890d32 schema:volumeNumber 54
    49 rdf:type schema:PublicationVolume
    50 N48184e096bfc43ca929e69285849003d schema:name doi
    51 schema:value 10.1007/s11425-010-4159-4
    52 rdf:type schema:PropertyValue
    53 Nbd9b3aebbc8a46d9b435f64cea72523a schema:name Springer Nature - SN SciGraph project
    54 rdf:type schema:Organization
    55 Nc5822abedd374f2fa2dd0eb1e7de5d83 schema:name dimensions_id
    56 schema:value pub.1018176291
    57 rdf:type schema:PropertyValue
    58 Nf503c796a2ab45fdaa04ebffb3a80be2 schema:issueNumber 8
    59 rdf:type schema:PublicationIssue
    60 sg:journal.1048022 schema:issn 1674-7283
    61 1869-1862
    62 schema:name Science China Mathematics
    63 schema:publisher Springer Nature
    64 rdf:type schema:Periodical
    65 sg:person.011551332252.27 schema:affiliation grid-institutes:grid.7177.6
    66 schema:familyName van der Geer
    67 schema:givenName Gerard
    68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011551332252.27
    69 rdf:type schema:Person
    70 sg:pub.10.1007/978-0-8176-4745-2_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049310473
    71 https://doi.org/10.1007/978-0-8176-4745-2_13
    72 rdf:type schema:CreativeWork
    73 sg:pub.10.1007/978-3-662-02632-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047933987
    74 https://doi.org/10.1007/978-3-662-02632-8
    75 rdf:type schema:CreativeWork
    76 sg:pub.10.1007/bf01231194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039347730
    77 https://doi.org/10.1007/bf01231194
    78 rdf:type schema:CreativeWork
    79 sg:pub.10.1007/bf01404673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039642990
    80 https://doi.org/10.1007/bf01404673
    81 rdf:type schema:CreativeWork
    82 sg:pub.10.1007/bf01444618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045364713
    83 https://doi.org/10.1007/bf01444618
    84 rdf:type schema:CreativeWork
    85 sg:pub.10.1007/bfb0058810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018918854
    86 https://doi.org/10.1007/bfb0058810
    87 rdf:type schema:CreativeWork
    88 sg:pub.10.1007/bfb0090305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018160239
    89 https://doi.org/10.1007/bfb0090305
    90 rdf:type schema:CreativeWork
    91 sg:pub.10.1007/bfb0098927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013969838
    92 https://doi.org/10.1007/bfb0098927
    93 rdf:type schema:CreativeWork
    94 grid-institutes:grid.7177.6 schema:alternateName Korteweg-de Vries Instituut, Universiteit van Amsterdam, Postbus 94248, 1090 GE, Amsterdam, The Netherlands
    95 schema:name Korteweg-de Vries Instituut, Universiteit van Amsterdam, Postbus 94248, 1090 GE, Amsterdam, The Netherlands
    96 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...