Boundary parametrization of planar self-affine tiles with collinear digit set View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-09-07

AUTHORS

Shigeki Akiyama, Benoît Loridant

ABSTRACT

We consider a class of planar self-affine tiles \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T = M^{ - 1} \cup _{a \in \mathcal{D}} (T + a) $$\end{document} generated by an expanding integral matrix M and a collinear digit set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{D} $$\end{document} as follows: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ M = \left( \begin{gathered} 0 - B \hfill \\ 1 - A \hfill \\ \end{gathered} \right),\mathcal{D} = \left\{ {\left( \begin{gathered} 0 \hfill \\ 0 \hfill \\ \end{gathered} \right),...,\left( \begin{gathered} |B| - 1 \hfill \\ 0 \hfill \\ \end{gathered} \right)} \right\} $$\end{document}. We give a parametrization \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{S}^1 \to \partial T $$\end{document} of the boundary of T with the following standard properties. It is Hölder continuous and associated with a sequence of simple closed polygonal approximations whose vertices lie on ∂T and have algebraic preimages. We derive a new proof that T is homeomorphic to a disk if and only if 2|A| ⩽ |B + 2|. More... »

PAGES

2173-2194

References to SciGraph publications

  • 1997-01. Integral self-affine tiles in ℝn part II: Lattice tilings in JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS
  • 1992. Number Systems and Fractal Geometry in PROBABILITY THEORY AND APPLICATIONS
  • 2003. Neighbours of Self-affine Tiles in Lattice Tilings in FRACTALS IN GRAZ 2001
  • 2001-01-01. Disk-Like Self-Affine Tiles in R2 in DISCRETE & COMPUTATIONAL GEOMETRY
  • 1994-05. Self-Similar Lattice Tilings in JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11425-010-4096-2

    DOI

    http://dx.doi.org/10.1007/s11425-010-4096-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1032513102


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, Faculty of Science, Niigata University, Ikarashi 2 8050, 950 2181, Niigata, Japan", 
              "id": "http://www.grid.ac/institutes/grid.260975.f", 
              "name": [
                "Department of Mathematics, Faculty of Science, Niigata University, Ikarashi 2 8050, 950 2181, Niigata, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Akiyama", 
            "givenName": "Shigeki", 
            "id": "sg:person.011153327405.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011153327405.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, Faculty of Science, Niigata University, Ikarashi 2 8050, 950 2181, Niigata, Japan", 
              "id": "http://www.grid.ac/institutes/grid.260975.f", 
              "name": [
                "Department of Mathematics, Faculty of Science, Niigata University, Ikarashi 2 8050, 950 2181, Niigata, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Loridant", 
            "givenName": "Beno\u00eet", 
            "id": "sg:person.016446476331.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016446476331.39"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-0348-8014-5_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051758689", 
              "https://doi.org/10.1007/978-3-0348-8014-5_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00454-001-0034-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012569141", 
              "https://doi.org/10.1007/s00454-001-0034-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02647948", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023619115", 
              "https://doi.org/10.1007/bf02647948"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-011-2817-9_21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011357955", 
              "https://doi.org/10.1007/978-94-011-2817-9_21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00041-001-4007-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044380998", 
              "https://doi.org/10.1007/s00041-001-4007-6"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-09-07", 
        "datePublishedReg": "2010-09-07", 
        "description": "We consider a class of planar self-affine tiles \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\nT = M^{ - 1}  \\cup _{a \\in \\mathcal{D}} (T + a)\n$$\\end{document} generated by an expanding integral matrix M and a collinear digit set \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\n\\mathcal{D}\n$$\\end{document} as follows: \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\nM = \\left( \\begin{gathered}\n  0 - B \\hfill \\\\\n  1 - A \\hfill \\\\ \n\\end{gathered}  \\right),\\mathcal{D} = \\left\\{ {\\left( \\begin{gathered}\n  0 \\hfill \\\\\n  0 \\hfill \\\\ \n\\end{gathered}  \\right),...,\\left( \\begin{gathered}\n  |B| - 1 \\hfill \\\\\n  0 \\hfill \\\\ \n\\end{gathered}  \\right)} \\right\\}\n$$\\end{document}. We give a parametrization \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\n\\mathbb{S}^1  \\to \\partial T\n$$\\end{document} of the boundary of T with the following standard properties. It is H\u00f6lder continuous and associated with a sequence of simple closed polygonal approximations whose vertices lie on \u2202T and have algebraic preimages. We derive a new proof that T is homeomorphic to a disk if and only if 2|A| \u2a7d |B + 2|.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11425-010-4096-2", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1048022", 
            "issn": [
              "1674-7283", 
              "1869-1862"
            ], 
            "name": "Science China Mathematics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "53"
          }
        ], 
        "keywords": [
          "self-affine tiles", 
          "boundary parametrization", 
          "matrix M", 
          "new proof", 
          "polygonal approximation", 
          "standard properties", 
          "parametrization", 
          "H\u00f6lder", 
          "approximation", 
          "vertices", 
          "set", 
          "preimage", 
          "digit sets", 
          "proof", 
          "class", 
          "boundaries", 
          "properties", 
          "disk", 
          "tiles", 
          "sequence"
        ], 
        "name": "Boundary parametrization of planar self-affine tiles with collinear digit set", 
        "pagination": "2173-2194", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1032513102"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11425-010-4096-2"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11425-010-4096-2", 
          "https://app.dimensions.ai/details/publication/pub.1032513102"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:26", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_510.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11425-010-4096-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11425-010-4096-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11425-010-4096-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11425-010-4096-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11425-010-4096-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    105 TRIPLES      22 PREDICATES      50 URIs      37 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11425-010-4096-2 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N413bfe6578a04849b27e1d44866c02fc
    4 schema:citation sg:pub.10.1007/978-3-0348-8014-5_10
    5 sg:pub.10.1007/978-94-011-2817-9_21
    6 sg:pub.10.1007/bf02647948
    7 sg:pub.10.1007/s00041-001-4007-6
    8 sg:pub.10.1007/s00454-001-0034-y
    9 schema:datePublished 2010-09-07
    10 schema:datePublishedReg 2010-09-07
    11 schema:description We consider a class of planar self-affine tiles \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T = M^{ - 1} \cup _{a \in \mathcal{D}} (T + a) $$\end{document} generated by an expanding integral matrix M and a collinear digit set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{D} $$\end{document} as follows: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ M = \left( \begin{gathered} 0 - B \hfill \\ 1 - A \hfill \\ \end{gathered} \right),\mathcal{D} = \left\{ {\left( \begin{gathered} 0 \hfill \\ 0 \hfill \\ \end{gathered} \right),...,\left( \begin{gathered} |B| - 1 \hfill \\ 0 \hfill \\ \end{gathered} \right)} \right\} $$\end{document}. We give a parametrization \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{S}^1 \to \partial T $$\end{document} of the boundary of T with the following standard properties. It is Hölder continuous and associated with a sequence of simple closed polygonal approximations whose vertices lie on ∂T and have algebraic preimages. We derive a new proof that T is homeomorphic to a disk if and only if 2|A| ⩽ |B + 2|.
    12 schema:genre article
    13 schema:inLanguage en
    14 schema:isAccessibleForFree false
    15 schema:isPartOf N1476cea8c0ea4a7e9ec0cf66189e5287
    16 N63e7554575ba4c09a83f70bb6e8981bc
    17 sg:journal.1048022
    18 schema:keywords Hölder
    19 approximation
    20 boundaries
    21 boundary parametrization
    22 class
    23 digit sets
    24 disk
    25 matrix M
    26 new proof
    27 parametrization
    28 polygonal approximation
    29 preimage
    30 proof
    31 properties
    32 self-affine tiles
    33 sequence
    34 set
    35 standard properties
    36 tiles
    37 vertices
    38 schema:name Boundary parametrization of planar self-affine tiles with collinear digit set
    39 schema:pagination 2173-2194
    40 schema:productId N3980fc9ae682437cae1a362ec870182b
    41 Na36b9e67638048c1a5663d16ac4a51c0
    42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032513102
    43 https://doi.org/10.1007/s11425-010-4096-2
    44 schema:sdDatePublished 2022-05-20T07:26
    45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    46 schema:sdPublisher N0150febc1fc947bf8d974a97faf35ea0
    47 schema:url https://doi.org/10.1007/s11425-010-4096-2
    48 sgo:license sg:explorer/license/
    49 sgo:sdDataset articles
    50 rdf:type schema:ScholarlyArticle
    51 N0150febc1fc947bf8d974a97faf35ea0 schema:name Springer Nature - SN SciGraph project
    52 rdf:type schema:Organization
    53 N1476cea8c0ea4a7e9ec0cf66189e5287 schema:issueNumber 9
    54 rdf:type schema:PublicationIssue
    55 N3980fc9ae682437cae1a362ec870182b schema:name dimensions_id
    56 schema:value pub.1032513102
    57 rdf:type schema:PropertyValue
    58 N413bfe6578a04849b27e1d44866c02fc rdf:first sg:person.011153327405.03
    59 rdf:rest N9fd054f245cc44ab9d41b287e169181c
    60 N63e7554575ba4c09a83f70bb6e8981bc schema:volumeNumber 53
    61 rdf:type schema:PublicationVolume
    62 N9fd054f245cc44ab9d41b287e169181c rdf:first sg:person.016446476331.39
    63 rdf:rest rdf:nil
    64 Na36b9e67638048c1a5663d16ac4a51c0 schema:name doi
    65 schema:value 10.1007/s11425-010-4096-2
    66 rdf:type schema:PropertyValue
    67 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    68 schema:name Mathematical Sciences
    69 rdf:type schema:DefinedTerm
    70 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    71 schema:name Pure Mathematics
    72 rdf:type schema:DefinedTerm
    73 sg:journal.1048022 schema:issn 1674-7283
    74 1869-1862
    75 schema:name Science China Mathematics
    76 schema:publisher Springer Nature
    77 rdf:type schema:Periodical
    78 sg:person.011153327405.03 schema:affiliation grid-institutes:grid.260975.f
    79 schema:familyName Akiyama
    80 schema:givenName Shigeki
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011153327405.03
    82 rdf:type schema:Person
    83 sg:person.016446476331.39 schema:affiliation grid-institutes:grid.260975.f
    84 schema:familyName Loridant
    85 schema:givenName Benoît
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016446476331.39
    87 rdf:type schema:Person
    88 sg:pub.10.1007/978-3-0348-8014-5_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051758689
    89 https://doi.org/10.1007/978-3-0348-8014-5_10
    90 rdf:type schema:CreativeWork
    91 sg:pub.10.1007/978-94-011-2817-9_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011357955
    92 https://doi.org/10.1007/978-94-011-2817-9_21
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1007/bf02647948 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023619115
    95 https://doi.org/10.1007/bf02647948
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1007/s00041-001-4007-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044380998
    98 https://doi.org/10.1007/s00041-001-4007-6
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1007/s00454-001-0034-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1012569141
    101 https://doi.org/10.1007/s00454-001-0034-y
    102 rdf:type schema:CreativeWork
    103 grid-institutes:grid.260975.f schema:alternateName Department of Mathematics, Faculty of Science, Niigata University, Ikarashi 2 8050, 950 2181, Niigata, Japan
    104 schema:name Department of Mathematics, Faculty of Science, Niigata University, Ikarashi 2 8050, 950 2181, Niigata, Japan
    105 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...