Conditional Congruence Closure over Uninterpreted and Interpreted Symbols View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Deepak Kapur

ABSTRACT

A framework for generating congruence closure and conditional congruence closure of ground terms over uninterpreted as well as interpreted symbols satisfying various properties is proposed. It is based on some of the key concepts from Kapur’s congruence closure algorithm (RTA97) for ground equations based on introducing new symbols for all nonconstant subterms appearing in the equation set and using ground completion on uninterpreted constants and purified equalities over interpreted symbols belonging to different theories. In the original signature, the resulting rewrite systems may be nonterminating but they still generate canonical forms. A byproduct of this framework is a constant Horn completion algorithm using which ground canonical Horn rewrite systems can be generated for conditional ground theories. New efficient algorithms for generating congruence closure of conditional and unconditional equations on ground terms over uninterpreted symbols are presented. The complexity of the conditional congruence closure is shown to be O(n*log(n)), which is the same as for unconditional ground equations. The proposed algorithm is motivated by our attempts to generate efficient and succinct interpolants for the quantifier-free theory of equality over uninterpreted function symbols which are often a conjunction of conditional equations and need additional simplification. A completion algorithm to generate a canonical conditional rewrite system from ground conditional equations is also presented. The framework is general and flexible and is used later to develop congruence closure algorithms for cases when function symbols satisfy simple properties such as commutativity, nilpotency, idempotency and identity as well as their combinations. Interesting outcomes include algorithms for canonical rewrite systems for ground equational and conditional theories on uninterpreted and interpreted symbols leading to generation of canonical forms for ground terms, constrained terms and Horn equations. More... »

PAGES

317-355

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11424-019-8377-8

DOI

http://dx.doi.org/10.1007/s11424-019-8377-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112141835


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of New Mexico", 
          "id": "https://www.grid.ac/institutes/grid.266832.b", 
          "name": [
            "Department of Computer Science, University of New Mexico, Albuquerque, NM, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kapur", 
        "givenName": "Deepak", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/3-540-55602-8_222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001188979", 
          "https://doi.org/10.1007/3-540-55602-8_222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0898-1221(94)00218-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006605427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0743-1066(84)90014-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006622450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0743-1066(84)90014-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006622450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/322186.322198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007875237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/322248.322251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010290207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-62950-5_59", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011006488", 
          "https://doi.org/10.1007/3-540-62950-5_59"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/321879.321884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012767237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0898-1221(81)90115-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014411736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/322217.322228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017596265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-54233-7_140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021073332", 
          "https://doi.org/10.1007/3-540-54233-7_140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-55602-8_185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022595714", 
          "https://doi.org/10.1007/3-540-55602-8_185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:jars.0000009518.26415.49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024387354", 
          "https://doi.org/10.1023/b:jars.0000009518.26415.49"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-61511-3_107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026497398", 
          "https://doi.org/10.1007/3-540-61511-3_107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsc.2010.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026577613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0012820", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031844554", 
          "https://doi.org/10.1007/bfb0012820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0012820", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031844554", 
          "https://doi.org/10.1007/bfb0012820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0747-7171(87)80067-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034750225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-61474-5_64", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036002590", 
          "https://doi.org/10.1007/3-540-61474-5_64"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-53904-2_115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039747673", 
          "https://doi.org/10.1007/3-540-53904-2_115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-15976-2_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040398024", 
          "https://doi.org/10.1007/3-540-15976-2_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ic.2006.08.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041523064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/10720084_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041636593", 
          "https://doi.org/10.1007/10720084_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-56393-8_28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041886523", 
          "https://doi.org/10.1007/3-540-56393-8_28"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/359545.359570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042895417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-78739-6_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043567885", 
          "https://doi.org/10.1007/978-3-540-78739-6_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-78739-6_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043567885", 
          "https://doi.org/10.1007/978-3-540-78739-6_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-08-012975-4.50028-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044119595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10817-014-9314-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047603823", 
          "https://doi.org/10.1007/s10817-014-9314-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/364099.364331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049224189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-37651-1_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050463702", 
          "https://doi.org/10.1007/978-3-642-37651-1_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0215084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062841946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9781139172752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098713477"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "A framework for generating congruence closure and conditional congruence closure of ground terms over uninterpreted as well as interpreted symbols satisfying various properties is proposed. It is based on some of the key concepts from Kapur\u2019s congruence closure algorithm (RTA97) for ground equations based on introducing new symbols for all nonconstant subterms appearing in the equation set and using ground completion on uninterpreted constants and purified equalities over interpreted symbols belonging to different theories. In the original signature, the resulting rewrite systems may be nonterminating but they still generate canonical forms. A byproduct of this framework is a constant Horn completion algorithm using which ground canonical Horn rewrite systems can be generated for conditional ground theories. New efficient algorithms for generating congruence closure of conditional and unconditional equations on ground terms over uninterpreted symbols are presented. The complexity of the conditional congruence closure is shown to be O(n*log(n)), which is the same as for unconditional ground equations. The proposed algorithm is motivated by our attempts to generate efficient and succinct interpolants for the quantifier-free theory of equality over uninterpreted function symbols which are often a conjunction of conditional equations and need additional simplification. A completion algorithm to generate a canonical conditional rewrite system from ground conditional equations is also presented. The framework is general and flexible and is used later to develop congruence closure algorithms for cases when function symbols satisfy simple properties such as commutativity, nilpotency, idempotency and identity as well as their combinations. Interesting outcomes include algorithms for canonical rewrite systems for ground equational and conditional theories on uninterpreted and interpreted symbols leading to generation of canonical forms for ground terms, constrained terms and Horn equations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11424-019-8377-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1053706", 
        "issn": [
          "1009-6124", 
          "1559-7067"
        ], 
        "name": "Journal of Systems Science and Complexity", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "32"
      }
    ], 
    "name": "Conditional Congruence Closure over Uninterpreted and Interpreted Symbols", 
    "pagination": "317-355", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a7602e09e49e351b338b8f978f634064c45afa4a48539dcec89103f6675b8937"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11424-019-8377-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112141835"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11424-019-8377-8", 
      "https://app.dimensions.ai/details/publication/pub.1112141835"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000337_0000000337/records_37560_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11424-019-8377-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11424-019-8377-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11424-019-8377-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11424-019-8377-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11424-019-8377-8'


 

This table displays all metadata directly associated to this object as RDF triples.

165 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11424-019-8377-8 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author N4d911fd56a344779a41cc5a11a3c30be
4 schema:citation sg:pub.10.1007/10720084_16
5 sg:pub.10.1007/3-540-15976-2_17
6 sg:pub.10.1007/3-540-53904-2_115
7 sg:pub.10.1007/3-540-54233-7_140
8 sg:pub.10.1007/3-540-55602-8_185
9 sg:pub.10.1007/3-540-55602-8_222
10 sg:pub.10.1007/3-540-56393-8_28
11 sg:pub.10.1007/3-540-61474-5_64
12 sg:pub.10.1007/3-540-61511-3_107
13 sg:pub.10.1007/3-540-62950-5_59
14 sg:pub.10.1007/978-3-540-78739-6_16
15 sg:pub.10.1007/978-3-642-37651-1_3
16 sg:pub.10.1007/bfb0012820
17 sg:pub.10.1007/s10817-014-9314-0
18 sg:pub.10.1023/b:jars.0000009518.26415.49
19 https://doi.org/10.1016/0743-1066(84)90014-1
20 https://doi.org/10.1016/0898-1221(81)90115-2
21 https://doi.org/10.1016/0898-1221(94)00218-a
22 https://doi.org/10.1016/b978-0-08-012975-4.50028-x
23 https://doi.org/10.1016/j.ic.2006.08.009
24 https://doi.org/10.1016/j.jsc.2010.06.005
25 https://doi.org/10.1016/s0747-7171(87)80067-6
26 https://doi.org/10.1017/cbo9781139172752
27 https://doi.org/10.1137/0215084
28 https://doi.org/10.1145/321879.321884
29 https://doi.org/10.1145/322186.322198
30 https://doi.org/10.1145/322217.322228
31 https://doi.org/10.1145/322248.322251
32 https://doi.org/10.1145/359545.359570
33 https://doi.org/10.1145/364099.364331
34 schema:datePublished 2019-02
35 schema:datePublishedReg 2019-02-01
36 schema:description A framework for generating congruence closure and conditional congruence closure of ground terms over uninterpreted as well as interpreted symbols satisfying various properties is proposed. It is based on some of the key concepts from Kapur’s congruence closure algorithm (RTA97) for ground equations based on introducing new symbols for all nonconstant subterms appearing in the equation set and using ground completion on uninterpreted constants and purified equalities over interpreted symbols belonging to different theories. In the original signature, the resulting rewrite systems may be nonterminating but they still generate canonical forms. A byproduct of this framework is a constant Horn completion algorithm using which ground canonical Horn rewrite systems can be generated for conditional ground theories. New efficient algorithms for generating congruence closure of conditional and unconditional equations on ground terms over uninterpreted symbols are presented. The complexity of the conditional congruence closure is shown to be O(n*log(n)), which is the same as for unconditional ground equations. The proposed algorithm is motivated by our attempts to generate efficient and succinct interpolants for the quantifier-free theory of equality over uninterpreted function symbols which are often a conjunction of conditional equations and need additional simplification. A completion algorithm to generate a canonical conditional rewrite system from ground conditional equations is also presented. The framework is general and flexible and is used later to develop congruence closure algorithms for cases when function symbols satisfy simple properties such as commutativity, nilpotency, idempotency and identity as well as their combinations. Interesting outcomes include algorithms for canonical rewrite systems for ground equational and conditional theories on uninterpreted and interpreted symbols leading to generation of canonical forms for ground terms, constrained terms and Horn equations.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf Na59f987272e54e38a636cb817d6a73f2
41 Nd4c9f47373f74be5af94e1b9d341dd0e
42 sg:journal.1053706
43 schema:name Conditional Congruence Closure over Uninterpreted and Interpreted Symbols
44 schema:pagination 317-355
45 schema:productId N042c026de8c2453d9b87217cffb78c32
46 N529a105bdc694098b3b31f297881318d
47 Nbd58c9a7ba58438f9b5e2a3697e1c89c
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112141835
49 https://doi.org/10.1007/s11424-019-8377-8
50 schema:sdDatePublished 2019-04-11T09:06
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher Ndbeb2b68906e4627bbb9f494134f9895
53 schema:url https://link.springer.com/10.1007%2Fs11424-019-8377-8
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N042c026de8c2453d9b87217cffb78c32 schema:name doi
58 schema:value 10.1007/s11424-019-8377-8
59 rdf:type schema:PropertyValue
60 N10889d4c9a1541eab4f812c094f072c7 schema:affiliation https://www.grid.ac/institutes/grid.266832.b
61 schema:familyName Kapur
62 schema:givenName Deepak
63 rdf:type schema:Person
64 N4d911fd56a344779a41cc5a11a3c30be rdf:first N10889d4c9a1541eab4f812c094f072c7
65 rdf:rest rdf:nil
66 N529a105bdc694098b3b31f297881318d schema:name dimensions_id
67 schema:value pub.1112141835
68 rdf:type schema:PropertyValue
69 Na59f987272e54e38a636cb817d6a73f2 schema:issueNumber 1
70 rdf:type schema:PublicationIssue
71 Nbd58c9a7ba58438f9b5e2a3697e1c89c schema:name readcube_id
72 schema:value a7602e09e49e351b338b8f978f634064c45afa4a48539dcec89103f6675b8937
73 rdf:type schema:PropertyValue
74 Nd4c9f47373f74be5af94e1b9d341dd0e schema:volumeNumber 32
75 rdf:type schema:PublicationVolume
76 Ndbeb2b68906e4627bbb9f494134f9895 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
79 schema:name Information and Computing Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
82 schema:name Computation Theory and Mathematics
83 rdf:type schema:DefinedTerm
84 sg:journal.1053706 schema:issn 1009-6124
85 1559-7067
86 schema:name Journal of Systems Science and Complexity
87 rdf:type schema:Periodical
88 sg:pub.10.1007/10720084_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041636593
89 https://doi.org/10.1007/10720084_16
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/3-540-15976-2_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040398024
92 https://doi.org/10.1007/3-540-15976-2_17
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/3-540-53904-2_115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039747673
95 https://doi.org/10.1007/3-540-53904-2_115
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/3-540-54233-7_140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021073332
98 https://doi.org/10.1007/3-540-54233-7_140
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/3-540-55602-8_185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022595714
101 https://doi.org/10.1007/3-540-55602-8_185
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/3-540-55602-8_222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001188979
104 https://doi.org/10.1007/3-540-55602-8_222
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/3-540-56393-8_28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041886523
107 https://doi.org/10.1007/3-540-56393-8_28
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/3-540-61474-5_64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036002590
110 https://doi.org/10.1007/3-540-61474-5_64
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/3-540-61511-3_107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026497398
113 https://doi.org/10.1007/3-540-61511-3_107
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/3-540-62950-5_59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011006488
116 https://doi.org/10.1007/3-540-62950-5_59
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/978-3-540-78739-6_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043567885
119 https://doi.org/10.1007/978-3-540-78739-6_16
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/978-3-642-37651-1_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050463702
122 https://doi.org/10.1007/978-3-642-37651-1_3
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/bfb0012820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031844554
125 https://doi.org/10.1007/bfb0012820
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s10817-014-9314-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047603823
128 https://doi.org/10.1007/s10817-014-9314-0
129 rdf:type schema:CreativeWork
130 sg:pub.10.1023/b:jars.0000009518.26415.49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024387354
131 https://doi.org/10.1023/b:jars.0000009518.26415.49
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/0743-1066(84)90014-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006622450
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/0898-1221(81)90115-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014411736
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/0898-1221(94)00218-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1006605427
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/b978-0-08-012975-4.50028-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044119595
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.ic.2006.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041523064
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.jsc.2010.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026577613
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/s0747-7171(87)80067-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034750225
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1017/cbo9781139172752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098713477
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1137/0215084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062841946
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1145/321879.321884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012767237
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1145/322186.322198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007875237
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1145/322217.322228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017596265
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1145/322248.322251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010290207
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1145/359545.359570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042895417
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1145/364099.364331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049224189
162 rdf:type schema:CreativeWork
163 https://www.grid.ac/institutes/grid.266832.b schema:alternateName University of New Mexico
164 schema:name Department of Computer Science, University of New Mexico, Albuquerque, NM, USA
165 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...