Mean Square Average Generalized Consensus of Multi-Agent Systems Under Time-Delays and Stochastic Disturbances View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Li Qiu, Liuxiao Guo, Jia Liu

ABSTRACT

Compared with the traditional consensus problem, this paper deals with the mean square average generalized consensus (MSAGC) of multi-agent systems under fixed directed topology, where all agents are affected by stochastic disturbances. Distributed protocol depending on delayed time information from neighbors is designed. Based on Lyapunov stability theory, together with results from matrix theory and Itô's derivation theory, the linear matrix inequalities approach is used to establish sufficient conditions to ensure MSAGC of multi-agent systems. Finally, numerical simulations are provided to illustrate the theoretical results. More... »

PAGES

588-599

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11424-018-7107-y

DOI

http://dx.doi.org/10.1007/s11424-018-7107-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110065318


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jiangnan University", 
          "id": "https://www.grid.ac/institutes/grid.258151.a", 
          "name": [
            "School of Science, Jiangnan University, 214122, Wuxi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qiu", 
        "givenName": "Li", 
        "id": "sg:person.012766477353.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012766477353.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jiangnan University", 
          "id": "https://www.grid.ac/institutes/grid.258151.a", 
          "name": [
            "School of Science, Jiangnan University, 214122, Wuxi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Liuxiao", 
        "id": "sg:person.011517605121.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517605121.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jiangnan University", 
          "id": "https://www.grid.ac/institutes/grid.258151.a", 
          "name": [
            "School of Science, Jiangnan University, 214122, Wuxi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jia", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.cnsns.2011.07.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010011793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3087531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018055764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-015-2026-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018949676", 
          "https://doi.org/10.1007/s11071-015-2026-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sysconle.2013.01.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020196212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2011.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023780918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rnc.2779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033103038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rnc.1631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038221146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/asjc.525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038913450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2009.04.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041263478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2014.07.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042047430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2014.01.142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042198377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2016.06.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042457563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2014.11.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044163704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sysconle.2007.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046272659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-014-1311-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050088998", 
          "https://doi.org/10.1007/s11071-014-1311-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/42/13/135101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052267981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/42/13/135101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052267981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3309017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057934637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0256-307x/28/9/090503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059058818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1674-1056/23/5/050508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059154051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.64.821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060800981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.64.821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060800981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mcas.2013.2271443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061389794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.2004.834113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061475719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.2005.864190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061476149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.2007.895948", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061476489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsi.2013.2265978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061567739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2013.2237786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061718232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511810817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098732013"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Compared with the traditional consensus problem, this paper deals with the mean square average generalized consensus (MSAGC) of multi-agent systems under fixed directed topology, where all agents are affected by stochastic disturbances. Distributed protocol depending on delayed time information from neighbors is designed. Based on Lyapunov stability theory, together with results from matrix theory and It\u00f4's derivation theory, the linear matrix inequalities approach is used to establish sufficient conditions to ensure MSAGC of multi-agent systems. Finally, numerical simulations are provided to illustrate the theoretical results.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11424-018-7107-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1053706", 
        "issn": [
          "1009-6124", 
          "1559-7067"
        ], 
        "name": "Journal of Systems Science and Complexity", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "32"
      }
    ], 
    "name": "Mean Square Average Generalized Consensus of Multi-Agent Systems Under Time-Delays and Stochastic Disturbances", 
    "pagination": "588-599", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5f1acf15ebdd24e85cd629b5459bbd8809cae12c22906de1737bf03e71bef71c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11424-018-7107-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110065318"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11424-018-7107-y", 
      "https://app.dimensions.ai/details/publication/pub.1110065318"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78941_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11424-018-7107-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11424-018-7107-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11424-018-7107-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11424-018-7107-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11424-018-7107-y'


 

This table displays all metadata directly associated to this object as RDF triples.

157 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11424-018-7107-y schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author N4c175b9389654905ad26d5a470a73cca
4 schema:citation sg:pub.10.1007/s11071-014-1311-7
5 sg:pub.10.1007/s11071-015-2026-0
6 https://doi.org/10.1002/asjc.525
7 https://doi.org/10.1002/rnc.1631
8 https://doi.org/10.1002/rnc.2779
9 https://doi.org/10.1016/j.amc.2014.01.142
10 https://doi.org/10.1016/j.automatica.2009.04.017
11 https://doi.org/10.1016/j.automatica.2011.09.005
12 https://doi.org/10.1016/j.cnsns.2011.07.014
13 https://doi.org/10.1016/j.neucom.2014.07.047
14 https://doi.org/10.1016/j.neucom.2014.11.007
15 https://doi.org/10.1016/j.neucom.2016.06.042
16 https://doi.org/10.1016/j.sysconle.2007.01.002
17 https://doi.org/10.1016/j.sysconle.2013.01.011
18 https://doi.org/10.1017/cbo9780511810817
19 https://doi.org/10.1063/1.3087531
20 https://doi.org/10.1063/1.3309017
21 https://doi.org/10.1088/0256-307x/28/9/090503
22 https://doi.org/10.1088/1674-1056/23/5/050508
23 https://doi.org/10.1088/1751-8113/42/13/135101
24 https://doi.org/10.1103/physrevlett.64.821
25 https://doi.org/10.1109/mcas.2013.2271443
26 https://doi.org/10.1109/tac.2004.834113
27 https://doi.org/10.1109/tac.2005.864190
28 https://doi.org/10.1109/tac.2007.895948
29 https://doi.org/10.1109/tcsi.2013.2265978
30 https://doi.org/10.1109/tnnls.2013.2237786
31 schema:datePublished 2019-04
32 schema:datePublishedReg 2019-04-01
33 schema:description Compared with the traditional consensus problem, this paper deals with the mean square average generalized consensus (MSAGC) of multi-agent systems under fixed directed topology, where all agents are affected by stochastic disturbances. Distributed protocol depending on delayed time information from neighbors is designed. Based on Lyapunov stability theory, together with results from matrix theory and Itô's derivation theory, the linear matrix inequalities approach is used to establish sufficient conditions to ensure MSAGC of multi-agent systems. Finally, numerical simulations are provided to illustrate the theoretical results.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N2141c0dd857b406bb4477fcff1421b03
38 N33107210dfe14f9fb9fec57a01afc38d
39 sg:journal.1053706
40 schema:name Mean Square Average Generalized Consensus of Multi-Agent Systems Under Time-Delays and Stochastic Disturbances
41 schema:pagination 588-599
42 schema:productId N28ead265da9442a6820d6dd829465541
43 N4ec132c8b0644641835423a302ca7a38
44 N8e08bee232104ec39c9167d464942c6b
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110065318
46 https://doi.org/10.1007/s11424-018-7107-y
47 schema:sdDatePublished 2019-04-11T13:18
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Nfd78d7d39ce04af7b7c8d6973e7ab2b6
50 schema:url https://link.springer.com/10.1007%2Fs11424-018-7107-y
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N077fcfa2a2ea4594a5f0958bbfc444e9 schema:affiliation https://www.grid.ac/institutes/grid.258151.a
55 schema:familyName Liu
56 schema:givenName Jia
57 rdf:type schema:Person
58 N09b3bb3daa3740caacf0cd974c0fdee6 rdf:first N077fcfa2a2ea4594a5f0958bbfc444e9
59 rdf:rest rdf:nil
60 N2141c0dd857b406bb4477fcff1421b03 schema:volumeNumber 32
61 rdf:type schema:PublicationVolume
62 N28ead265da9442a6820d6dd829465541 schema:name doi
63 schema:value 10.1007/s11424-018-7107-y
64 rdf:type schema:PropertyValue
65 N33107210dfe14f9fb9fec57a01afc38d schema:issueNumber 2
66 rdf:type schema:PublicationIssue
67 N4c175b9389654905ad26d5a470a73cca rdf:first sg:person.012766477353.09
68 rdf:rest Nb516647e32fd4d4594c1b192d56e632d
69 N4ec132c8b0644641835423a302ca7a38 schema:name readcube_id
70 schema:value 5f1acf15ebdd24e85cd629b5459bbd8809cae12c22906de1737bf03e71bef71c
71 rdf:type schema:PropertyValue
72 N8e08bee232104ec39c9167d464942c6b schema:name dimensions_id
73 schema:value pub.1110065318
74 rdf:type schema:PropertyValue
75 Nb516647e32fd4d4594c1b192d56e632d rdf:first sg:person.011517605121.27
76 rdf:rest N09b3bb3daa3740caacf0cd974c0fdee6
77 Nfd78d7d39ce04af7b7c8d6973e7ab2b6 schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
80 schema:name Information and Computing Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
83 schema:name Computation Theory and Mathematics
84 rdf:type schema:DefinedTerm
85 sg:journal.1053706 schema:issn 1009-6124
86 1559-7067
87 schema:name Journal of Systems Science and Complexity
88 rdf:type schema:Periodical
89 sg:person.011517605121.27 schema:affiliation https://www.grid.ac/institutes/grid.258151.a
90 schema:familyName Guo
91 schema:givenName Liuxiao
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517605121.27
93 rdf:type schema:Person
94 sg:person.012766477353.09 schema:affiliation https://www.grid.ac/institutes/grid.258151.a
95 schema:familyName Qiu
96 schema:givenName Li
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012766477353.09
98 rdf:type schema:Person
99 sg:pub.10.1007/s11071-014-1311-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050088998
100 https://doi.org/10.1007/s11071-014-1311-7
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s11071-015-2026-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018949676
103 https://doi.org/10.1007/s11071-015-2026-0
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1002/asjc.525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038913450
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1002/rnc.1631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038221146
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1002/rnc.2779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033103038
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.amc.2014.01.142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042198377
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.automatica.2009.04.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041263478
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.automatica.2011.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023780918
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.cnsns.2011.07.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010011793
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.neucom.2014.07.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042047430
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.neucom.2014.11.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044163704
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.neucom.2016.06.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042457563
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.sysconle.2007.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046272659
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.sysconle.2013.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020196212
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1017/cbo9780511810817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098732013
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1063/1.3087531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018055764
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1063/1.3309017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057934637
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1088/0256-307x/28/9/090503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059058818
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1088/1674-1056/23/5/050508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059154051
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1088/1751-8113/42/13/135101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052267981
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physrevlett.64.821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060800981
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/mcas.2013.2271443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061389794
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/tac.2004.834113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061475719
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/tac.2005.864190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061476149
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/tac.2007.895948 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061476489
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/tcsi.2013.2265978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061567739
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/tnnls.2013.2237786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061718232
154 rdf:type schema:CreativeWork
155 https://www.grid.ac/institutes/grid.258151.a schema:alternateName Jiangnan University
156 schema:name School of Science, Jiangnan University, 214122, Wuxi, China
157 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...