A Demand Forecasting Method Based on Stochastic Frontier Analysis and Model Average: An Application in Air Travel Demand Forecasting View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Xinyu Zhang, Yafei Zheng, Shouyang Wang

ABSTRACT

Demand forecasting is often difficult due to the unobservability of the applicable historical demand series. In this study, the authors propose a demand forecasting method based on stochastic frontier analysis (SFA) models and a model average technique. First, considering model uncertainty, a set of alternative SFA models with various combinations of explanatory variables and distribution assumptions are constructed to estimate demands. Second, an average estimate from the estimated demand values is obtained using a model average technique. Finally, future demand forecasts are achieved, with the average estimates used as historical observations. An empirical application of air travel demand forecasting is implemented. The results of a forecasting performance comparison show that in addition to its ability to estimate demand, the proposed method outperforms other common methods in terms of forecasting passenger traffic. More... »

PAGES

615-633

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11424-018-7093-0

DOI

http://dx.doi.org/10.1007/s11424-018-7093-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110065317


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Econometrics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.9227.e", 
          "name": [
            "Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 100190, Beijing, China", 
            "Center for Forecasting Science, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Xinyu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Academy of Mathematics and Systems Science", 
          "id": "https://www.grid.ac/institutes/grid.458463.8", 
          "name": [
            "Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 100190, Beijing, China", 
            "Postdoctoral Working Station, Shenwan Hongyuan Securities Co., Ltd., 200031, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Yafei", 
        "id": "sg:person.015323710467.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015323710467.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.9227.e", 
          "name": [
            "Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 100190, Beijing, China", 
            "Center for Forecasting Science, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Shouyang", 
        "id": "sg:person.012712520463.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012712520463.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.epsr.2005.01.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000363354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0969-6997(00)00043-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001010639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/10-aos832", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002026368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11424-008-9062-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002330998", 
          "https://doi.org/10.1007/s11424-008-9062-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0160-7383(97)00049-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002695163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03081060.2010.512217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002780490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jairtraman.2008.08.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003898667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1468-0262.2007.00785.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004729166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-306-47630-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006002736", 
          "https://doi.org/10.1007/978-0-306-47630-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-306-47630-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006002736", 
          "https://doi.org/10.1007/978-0-306-47630-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-4076(77)90052-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006216324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0969-6997(97)82789-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006563245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0261-5177(02)00009-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006804980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02664760701592125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006981345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11424-014-3305-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010291034", 
          "https://doi.org/10.1007/s11424-014-3305-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11424-014-3305-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010291034", 
          "https://doi.org/10.1007/s11424-014-3305-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jairtraman.2014.01.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014414299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-2070(00)00053-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016002877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jairtraman.2014.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016125997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0305-0483(01)00026-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018285849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-985x.2005.00366.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019523653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-985x.2005.00366.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019523653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1057/palgrave.rpm.5170027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025028054", 
          "https://doi.org/10.1057/palgrave.rpm.5170027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1011453526849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025084066", 
          "https://doi.org/10.1023/a:1011453526849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijforecast.2010.02.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025656760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11424-014-3188-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027681835", 
          "https://doi.org/10.1007/s11424-014-3188-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1570-6672(09)60077-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029009268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01205442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029766433", 
          "https://doi.org/10.1007/bf01205442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01205442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029766433", 
          "https://doi.org/10.1007/bf01205442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tourman.2004.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032665839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00036846.2014.975331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033246901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jeconom.2013.01.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034452585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enpol.2006.05.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034549498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00036840010014012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034822590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jeconom.2011.06.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035640498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tre.2009.08.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036275554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/000368400322057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038047589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0261-5177(02)00068-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041470718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0261-5177(02)00068-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041470718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0010-8804(98)80027-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044441116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tourman.2004.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046896792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-2070(02)00011-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048170371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tra.2005.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051369606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tra.2005.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051369606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tourman.2005.12.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051493804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0047287505274653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053875781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0047287505274653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053875781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.2013.838168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058306115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/ast052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059422104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2006.878172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061651024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/109634800102500404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063978275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/109634800102500404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063978275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ss/1009212519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064409393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1912526", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069640157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2525757", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069971904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2533961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069979136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5367/000000005774353006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072794484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5367/000000005774353006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072794484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordhb/9780195398649.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108503672"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Demand forecasting is often difficult due to the unobservability of the applicable historical demand series. In this study, the authors propose a demand forecasting method based on stochastic frontier analysis (SFA) models and a model average technique. First, considering model uncertainty, a set of alternative SFA models with various combinations of explanatory variables and distribution assumptions are constructed to estimate demands. Second, an average estimate from the estimated demand values is obtained using a model average technique. Finally, future demand forecasts are achieved, with the average estimates used as historical observations. An empirical application of air travel demand forecasting is implemented. The results of a forecasting performance comparison show that in addition to its ability to estimate demand, the proposed method outperforms other common methods in terms of forecasting passenger traffic.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11424-018-7093-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1053706", 
        "issn": [
          "1009-6124", 
          "1559-7067"
        ], 
        "name": "Journal of Systems Science and Complexity", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "32"
      }
    ], 
    "name": "A Demand Forecasting Method Based on Stochastic Frontier Analysis and Model Average: An Application in Air Travel Demand Forecasting", 
    "pagination": "615-633", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "75b60362fa47dbdfbbbc2f81105f73097b06817178f4d3cef6563ddaf22d95e7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11424-018-7093-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110065317"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11424-018-7093-0", 
      "https://app.dimensions.ai/details/publication/pub.1110065317"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78938_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11424-018-7093-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11424-018-7093-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11424-018-7093-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11424-018-7093-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11424-018-7093-0'


 

This table displays all metadata directly associated to this object as RDF triples.

236 TRIPLES      21 PREDICATES      77 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11424-018-7093-0 schema:about anzsrc-for:14
2 anzsrc-for:1403
3 schema:author N8a1f2d85ee064dc5a54a506f8a4baef9
4 schema:citation sg:pub.10.1007/978-0-306-47630-3
5 sg:pub.10.1007/bf01205442
6 sg:pub.10.1007/s11424-008-9062-5
7 sg:pub.10.1007/s11424-014-3188-4
8 sg:pub.10.1007/s11424-014-3305-4
9 sg:pub.10.1023/a:1011453526849
10 sg:pub.10.1057/palgrave.rpm.5170027
11 https://doi.org/10.1016/0304-4076(77)90052-5
12 https://doi.org/10.1016/j.enpol.2006.05.009
13 https://doi.org/10.1016/j.epsr.2005.01.006
14 https://doi.org/10.1016/j.ijforecast.2010.02.010
15 https://doi.org/10.1016/j.jairtraman.2008.08.008
16 https://doi.org/10.1016/j.jairtraman.2014.01.009
17 https://doi.org/10.1016/j.jairtraman.2014.03.004
18 https://doi.org/10.1016/j.jeconom.2011.06.019
19 https://doi.org/10.1016/j.jeconom.2013.01.004
20 https://doi.org/10.1016/j.tourman.2004.05.003
21 https://doi.org/10.1016/j.tourman.2004.09.004
22 https://doi.org/10.1016/j.tourman.2005.12.018
23 https://doi.org/10.1016/j.tra.2005.07.003
24 https://doi.org/10.1016/j.tre.2009.08.008
25 https://doi.org/10.1016/s0010-8804(98)80027-x
26 https://doi.org/10.1016/s0160-7383(97)00049-2
27 https://doi.org/10.1016/s0169-2070(00)00053-4
28 https://doi.org/10.1016/s0169-2070(02)00011-0
29 https://doi.org/10.1016/s0261-5177(02)00009-2
30 https://doi.org/10.1016/s0261-5177(02)00068-7
31 https://doi.org/10.1016/s0305-0483(01)00026-3
32 https://doi.org/10.1016/s0969-6997(00)00043-0
33 https://doi.org/10.1016/s0969-6997(97)82789-5
34 https://doi.org/10.1016/s1570-6672(09)60077-5
35 https://doi.org/10.1080/00036840010014012
36 https://doi.org/10.1080/000368400322057
37 https://doi.org/10.1080/00036846.2014.975331
38 https://doi.org/10.1080/01621459.2013.838168
39 https://doi.org/10.1080/02664760701592125
40 https://doi.org/10.1080/03081060.2010.512217
41 https://doi.org/10.1093/biomet/ast052
42 https://doi.org/10.1093/oxfordhb/9780195398649.001.0001
43 https://doi.org/10.1109/tit.2006.878172
44 https://doi.org/10.1111/j.1467-985x.2005.00366.x
45 https://doi.org/10.1111/j.1468-0262.2007.00785.x
46 https://doi.org/10.1177/0047287505274653
47 https://doi.org/10.1177/109634800102500404
48 https://doi.org/10.1214/10-aos832
49 https://doi.org/10.1214/ss/1009212519
50 https://doi.org/10.2307/1912526
51 https://doi.org/10.2307/2525757
52 https://doi.org/10.2307/2533961
53 https://doi.org/10.5367/000000005774353006
54 schema:datePublished 2019-04
55 schema:datePublishedReg 2019-04-01
56 schema:description Demand forecasting is often difficult due to the unobservability of the applicable historical demand series. In this study, the authors propose a demand forecasting method based on stochastic frontier analysis (SFA) models and a model average technique. First, considering model uncertainty, a set of alternative SFA models with various combinations of explanatory variables and distribution assumptions are constructed to estimate demands. Second, an average estimate from the estimated demand values is obtained using a model average technique. Finally, future demand forecasts are achieved, with the average estimates used as historical observations. An empirical application of air travel demand forecasting is implemented. The results of a forecasting performance comparison show that in addition to its ability to estimate demand, the proposed method outperforms other common methods in terms of forecasting passenger traffic.
57 schema:genre research_article
58 schema:inLanguage en
59 schema:isAccessibleForFree false
60 schema:isPartOf N467d581bd9ff4365b57f78422918705f
61 N828b99a9c36d4aa083f94c42ee119c5e
62 sg:journal.1053706
63 schema:name A Demand Forecasting Method Based on Stochastic Frontier Analysis and Model Average: An Application in Air Travel Demand Forecasting
64 schema:pagination 615-633
65 schema:productId N258125f41074464180cccd27c66db272
66 N2ad5ad94f8ee411b8fbad4ac92e75037
67 N3eb8354263f2487c95d94a62eb05fafe
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110065317
69 https://doi.org/10.1007/s11424-018-7093-0
70 schema:sdDatePublished 2019-04-11T13:18
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N6a2b9469092046c0b81be1f3e311137f
73 schema:url https://link.springer.com/10.1007%2Fs11424-018-7093-0
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N258125f41074464180cccd27c66db272 schema:name dimensions_id
78 schema:value pub.1110065317
79 rdf:type schema:PropertyValue
80 N2ad5ad94f8ee411b8fbad4ac92e75037 schema:name doi
81 schema:value 10.1007/s11424-018-7093-0
82 rdf:type schema:PropertyValue
83 N33eafe591dc04bfabd8948ea8bc90fe8 rdf:first sg:person.015323710467.04
84 rdf:rest N5607a272d5a14ccea135b6db17fb448d
85 N3eb8354263f2487c95d94a62eb05fafe schema:name readcube_id
86 schema:value 75b60362fa47dbdfbbbc2f81105f73097b06817178f4d3cef6563ddaf22d95e7
87 rdf:type schema:PropertyValue
88 N467d581bd9ff4365b57f78422918705f schema:volumeNumber 32
89 rdf:type schema:PublicationVolume
90 N5607a272d5a14ccea135b6db17fb448d rdf:first sg:person.012712520463.31
91 rdf:rest rdf:nil
92 N6a2b9469092046c0b81be1f3e311137f schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N828b99a9c36d4aa083f94c42ee119c5e schema:issueNumber 2
95 rdf:type schema:PublicationIssue
96 N8a1f2d85ee064dc5a54a506f8a4baef9 rdf:first Na0c112945e4d45ad81fe7a2674320f90
97 rdf:rest N33eafe591dc04bfabd8948ea8bc90fe8
98 Na0c112945e4d45ad81fe7a2674320f90 schema:affiliation https://www.grid.ac/institutes/grid.9227.e
99 schema:familyName Zhang
100 schema:givenName Xinyu
101 rdf:type schema:Person
102 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
103 schema:name Economics
104 rdf:type schema:DefinedTerm
105 anzsrc-for:1403 schema:inDefinedTermSet anzsrc-for:
106 schema:name Econometrics
107 rdf:type schema:DefinedTerm
108 sg:journal.1053706 schema:issn 1009-6124
109 1559-7067
110 schema:name Journal of Systems Science and Complexity
111 rdf:type schema:Periodical
112 sg:person.012712520463.31 schema:affiliation https://www.grid.ac/institutes/grid.9227.e
113 schema:familyName Wang
114 schema:givenName Shouyang
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012712520463.31
116 rdf:type schema:Person
117 sg:person.015323710467.04 schema:affiliation https://www.grid.ac/institutes/grid.458463.8
118 schema:familyName Zheng
119 schema:givenName Yafei
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015323710467.04
121 rdf:type schema:Person
122 sg:pub.10.1007/978-0-306-47630-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006002736
123 https://doi.org/10.1007/978-0-306-47630-3
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/bf01205442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029766433
126 https://doi.org/10.1007/bf01205442
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s11424-008-9062-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002330998
129 https://doi.org/10.1007/s11424-008-9062-5
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s11424-014-3188-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027681835
132 https://doi.org/10.1007/s11424-014-3188-4
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s11424-014-3305-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010291034
135 https://doi.org/10.1007/s11424-014-3305-4
136 rdf:type schema:CreativeWork
137 sg:pub.10.1023/a:1011453526849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025084066
138 https://doi.org/10.1023/a:1011453526849
139 rdf:type schema:CreativeWork
140 sg:pub.10.1057/palgrave.rpm.5170027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025028054
141 https://doi.org/10.1057/palgrave.rpm.5170027
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/0304-4076(77)90052-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006216324
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.enpol.2006.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034549498
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.epsr.2005.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000363354
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.ijforecast.2010.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025656760
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.jairtraman.2008.08.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003898667
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.jairtraman.2014.01.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014414299
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.jairtraman.2014.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016125997
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.jeconom.2011.06.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035640498
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.jeconom.2013.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034452585
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.tourman.2004.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032665839
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.tourman.2004.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046896792
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.tourman.2005.12.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051493804
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.tra.2005.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051369606
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.tre.2009.08.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036275554
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/s0010-8804(98)80027-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044441116
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/s0160-7383(97)00049-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002695163
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/s0169-2070(00)00053-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016002877
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/s0169-2070(02)00011-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048170371
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/s0261-5177(02)00009-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006804980
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/s0261-5177(02)00068-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041470718
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/s0305-0483(01)00026-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018285849
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/s0969-6997(00)00043-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001010639
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/s0969-6997(97)82789-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006563245
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/s1570-6672(09)60077-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029009268
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1080/00036840010014012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034822590
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1080/000368400322057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038047589
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1080/00036846.2014.975331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033246901
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1080/01621459.2013.838168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058306115
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1080/02664760701592125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006981345
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1080/03081060.2010.512217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002780490
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1093/biomet/ast052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059422104
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1093/oxfordhb/9780195398649.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108503672
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1109/tit.2006.878172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061651024
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1111/j.1467-985x.2005.00366.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019523653
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1111/j.1468-0262.2007.00785.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004729166
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1177/0047287505274653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053875781
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1177/109634800102500404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063978275
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1214/10-aos832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002026368
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1214/ss/1009212519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064409393
220 rdf:type schema:CreativeWork
221 https://doi.org/10.2307/1912526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069640157
222 rdf:type schema:CreativeWork
223 https://doi.org/10.2307/2525757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069971904
224 rdf:type schema:CreativeWork
225 https://doi.org/10.2307/2533961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069979136
226 rdf:type schema:CreativeWork
227 https://doi.org/10.5367/000000005774353006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072794484
228 rdf:type schema:CreativeWork
229 https://www.grid.ac/institutes/grid.458463.8 schema:alternateName Academy of Mathematics and Systems Science
230 schema:name Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 100190, Beijing, China
231 Postdoctoral Working Station, Shenwan Hongyuan Securities Co., Ltd., 200031, Shanghai, China
232 rdf:type schema:Organization
233 https://www.grid.ac/institutes/grid.9227.e schema:alternateName Chinese Academy of Sciences
234 schema:name Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 100190, Beijing, China
235 Center for Forecasting Science, Chinese Academy of Sciences, 100190, Beijing, China
236 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...