On the numerical solution of some Eikonal equations: An elliptic solver approach View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-09

AUTHORS

Alexandre Caboussat, Roland Glowinski, Tsorng-Whay Pan

ABSTRACT

The steady Eikonal equation is a prototypical first-order fully nonlinear equation. A numerical method based on elliptic solvers is presented here to solve two different kinds of steady Eikonal equations and compute solutions, which are maximal and minimal in the variational sense. The approach in this paper relies on a variational argument involving penalty, a biharmonic regularization, and an operator-splitting-based time-discretization scheme for the solution of an associated initial-value problem. This approach allows the decoupling of the nonlinearities and differential operators. Numerical experiments are performed to validate this approach and investigate its convergence properties from a numerical viewpoint. More... »

PAGES

689-702

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11401-015-0971-z

DOI

http://dx.doi.org/10.1007/s11401-015-0971-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031611979


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Haute Ecole de Gestion de Gen\u00e8ve, University of Applied Sciences, Western Switzerland (HES-SO), Route de Drize 7, 1227, Carouge, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Caboussat", 
        "givenName": "Alexandre", 
        "id": "sg:person.012645470706.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012645470706.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Houston", 
          "id": "https://www.grid.ac/institutes/grid.266436.3", 
          "name": [
            "Department of Mathematics, University of Houston, 4800 Calhoun Rd, 77204-3008, Houston, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Glowinski", 
        "givenName": "Roland", 
        "id": "sg:person.01167212034.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167212034.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Houston", 
          "id": "https://www.grid.ac/institutes/grid.266436.3", 
          "name": [
            "Department of Mathematics, University of Houston, 4800 Calhoun Rd, 77204-3008, Houston, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pan", 
        "givenName": "Tsorng-Whay", 
        "id": "sg:person.013505452521.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013505452521.86"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1006252343", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1562-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006252343", 
          "https://doi.org/10.1007/978-1-4612-1562-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1562-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006252343", 
          "https://doi.org/10.1007/978-1-4612-1562-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1631-073x(03)00025-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021376705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1631-073x(03)00025-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021376705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03605300903253927", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032453134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/1.1443263", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039255195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1631-073x(03)00024-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041433243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1631-073x(03)00024-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041433243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.15.8431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044090143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matpur.2008.02.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045865009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/83.541425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061239505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036144598347059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062877998"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-09", 
    "datePublishedReg": "2015-09-01", 
    "description": "The steady Eikonal equation is a prototypical first-order fully nonlinear equation. A numerical method based on elliptic solvers is presented here to solve two different kinds of steady Eikonal equations and compute solutions, which are maximal and minimal in the variational sense. The approach in this paper relies on a variational argument involving penalty, a biharmonic regularization, and an operator-splitting-based time-discretization scheme for the solution of an associated initial-value problem. This approach allows the decoupling of the nonlinearities and differential operators. Numerical experiments are performed to validate this approach and investigate its convergence properties from a numerical viewpoint.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11401-015-0971-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1295207", 
        "issn": [
          "0252-9599", 
          "1860-6261"
        ], 
        "name": "Chinese Annals of Mathematics, Series B", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "36"
      }
    ], 
    "name": "On the numerical solution of some Eikonal equations: An elliptic solver approach", 
    "pagination": "689-702", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9697c8d3a45f32688ccb0193ef60a02fa40cc37ff2efc7f4ce2f114988167b6d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11401-015-0971-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031611979"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11401-015-0971-z", 
      "https://app.dimensions.ai/details/publication/pub.1031611979"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000522.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11401-015-0971-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11401-015-0971-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11401-015-0971-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11401-015-0971-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11401-015-0971-z'


 

This table displays all metadata directly associated to this object as RDF triples.

107 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11401-015-0971-z schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Na90cd47f616a4a2285eb7836addbc72c
4 schema:citation sg:pub.10.1007/978-1-4612-1562-2
5 https://app.dimensions.ai/details/publication/pub.1006252343
6 https://doi.org/10.1016/j.matpur.2008.02.011
7 https://doi.org/10.1016/s1631-073x(03)00024-4
8 https://doi.org/10.1016/s1631-073x(03)00025-6
9 https://doi.org/10.1073/pnas.95.15.8431
10 https://doi.org/10.1080/03605300903253927
11 https://doi.org/10.1109/83.541425
12 https://doi.org/10.1137/s0036144598347059
13 https://doi.org/10.1190/1.1443263
14 schema:datePublished 2015-09
15 schema:datePublishedReg 2015-09-01
16 schema:description The steady Eikonal equation is a prototypical first-order fully nonlinear equation. A numerical method based on elliptic solvers is presented here to solve two different kinds of steady Eikonal equations and compute solutions, which are maximal and minimal in the variational sense. The approach in this paper relies on a variational argument involving penalty, a biharmonic regularization, and an operator-splitting-based time-discretization scheme for the solution of an associated initial-value problem. This approach allows the decoupling of the nonlinearities and differential operators. Numerical experiments are performed to validate this approach and investigate its convergence properties from a numerical viewpoint.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N8e9f5569e53342b0a65667bb66efd9c3
21 N9b03d5b07a094243ac8f0b51c7c0ae18
22 sg:journal.1295207
23 schema:name On the numerical solution of some Eikonal equations: An elliptic solver approach
24 schema:pagination 689-702
25 schema:productId N12ee81eb7776404d90db6ff223a2a83d
26 N4316025455bc49dab390faf394c2a22f
27 N4ac53bad5e2f421aaa5b5fa3d69b2c91
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031611979
29 https://doi.org/10.1007/s11401-015-0971-z
30 schema:sdDatePublished 2019-04-10T19:11
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher Ne95eb21263574a4895a6332f6f12ea2d
33 schema:url http://link.springer.com/10.1007%2Fs11401-015-0971-z
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N12ee81eb7776404d90db6ff223a2a83d schema:name doi
38 schema:value 10.1007/s11401-015-0971-z
39 rdf:type schema:PropertyValue
40 N4316025455bc49dab390faf394c2a22f schema:name dimensions_id
41 schema:value pub.1031611979
42 rdf:type schema:PropertyValue
43 N4ac53bad5e2f421aaa5b5fa3d69b2c91 schema:name readcube_id
44 schema:value 9697c8d3a45f32688ccb0193ef60a02fa40cc37ff2efc7f4ce2f114988167b6d
45 rdf:type schema:PropertyValue
46 N8e9f5569e53342b0a65667bb66efd9c3 schema:volumeNumber 36
47 rdf:type schema:PublicationVolume
48 N9b03d5b07a094243ac8f0b51c7c0ae18 schema:issueNumber 5
49 rdf:type schema:PublicationIssue
50 N9e55decb88254e3ca6fcdec79dd87a33 rdf:first sg:person.01167212034.31
51 rdf:rest Nc9dfb1b148824193817fe1de85b4c060
52 Na90cd47f616a4a2285eb7836addbc72c rdf:first sg:person.012645470706.13
53 rdf:rest N9e55decb88254e3ca6fcdec79dd87a33
54 Nc81fd93f91704ab1bb9d502d19d11187 schema:name Haute Ecole de Gestion de Genève, University of Applied Sciences, Western Switzerland (HES-SO), Route de Drize 7, 1227, Carouge, Switzerland
55 rdf:type schema:Organization
56 Nc9dfb1b148824193817fe1de85b4c060 rdf:first sg:person.013505452521.86
57 rdf:rest rdf:nil
58 Ne95eb21263574a4895a6332f6f12ea2d schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
61 schema:name Mathematical Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
64 schema:name Numerical and Computational Mathematics
65 rdf:type schema:DefinedTerm
66 sg:journal.1295207 schema:issn 0252-9599
67 1860-6261
68 schema:name Chinese Annals of Mathematics, Series B
69 rdf:type schema:Periodical
70 sg:person.01167212034.31 schema:affiliation https://www.grid.ac/institutes/grid.266436.3
71 schema:familyName Glowinski
72 schema:givenName Roland
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167212034.31
74 rdf:type schema:Person
75 sg:person.012645470706.13 schema:affiliation Nc81fd93f91704ab1bb9d502d19d11187
76 schema:familyName Caboussat
77 schema:givenName Alexandre
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012645470706.13
79 rdf:type schema:Person
80 sg:person.013505452521.86 schema:affiliation https://www.grid.ac/institutes/grid.266436.3
81 schema:familyName Pan
82 schema:givenName Tsorng-Whay
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013505452521.86
84 rdf:type schema:Person
85 sg:pub.10.1007/978-1-4612-1562-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006252343
86 https://doi.org/10.1007/978-1-4612-1562-2
87 rdf:type schema:CreativeWork
88 https://app.dimensions.ai/details/publication/pub.1006252343 schema:CreativeWork
89 https://doi.org/10.1016/j.matpur.2008.02.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045865009
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/s1631-073x(03)00024-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041433243
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/s1631-073x(03)00025-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021376705
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1073/pnas.95.15.8431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044090143
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1080/03605300903253927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032453134
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1109/83.541425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061239505
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1137/s0036144598347059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062877998
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1190/1.1443263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039255195
104 rdf:type schema:CreativeWork
105 https://www.grid.ac/institutes/grid.266436.3 schema:alternateName University of Houston
106 schema:name Department of Mathematics, University of Houston, 4800 Calhoun Rd, 77204-3008, Houston, Texas, USA
107 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...