Revisiting the Parallel Strategy for DOACROSS Loops View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Song Liu, Yuan-Zhen Cui, Nian-Jun Zou, Wen-Hao Zhu, Dong Zhang, Wei-Guo Wu

ABSTRACT

DOACROSS loops are significant parts in many important scientific and engineering applications, which are generally exploited pipeline/wave-front parallelism by loop transformations. However, previous work almost statically performs iterations in parallel threads, thus causing a waste of computing resources in thread synchronization. This paper proposes a brand-new parallel strategy for DOACROSS loops that provides a dynamic task assignment with reduced dependences to achieve wave-front parallelism through loop tiling. The proposed strategy uses a master-slave parallel mode and some customized structures to realize dynamic and flexible parallelization, which effectively avoids threads from waiting in communication. An efficient tile size selection (TSS) approach is also proposed to preserve data reuse in cache for tiled codes. The experimental results show that the proposed parallel strategy obtains good and stable speedups over six typical benchmarks with different problem sizes and different numbers of threads on an Intel® Xeon® 32-core server. And it outperforms two static strategies, a barrier-based strategy and a post/wait-based strategy, by 32% and 20% in average performance, respectively. This strategy also yields a better performance than a mutex-based dynamic strategy. Besides, it has been demonstrated that the proposed TSS approach can achieve a near-optimal performance and is comparable with a state-of-the-art TSS approach. More... »

PAGES

456-475

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11390-019-1919-7

DOI

http://dx.doi.org/10.1007/s11390-019-1919-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113046554


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0803", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computer Software", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Xi'an Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.43169.39", 
          "name": [
            "School of Electronic Information and Engineering, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Song", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xi'an Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.43169.39", 
          "name": [
            "School of Electronic Information and Engineering, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cui", 
        "givenName": "Yuan-Zhen", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xi'an Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.43169.39", 
          "name": [
            "School of Electronic Information and Engineering, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zou", 
        "givenName": "Nian-Jun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai University", 
          "id": "https://www.grid.ac/institutes/grid.39436.3b", 
          "name": [
            "School of Computer Engineering and Science, Shanghai University, 200444, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Wen-Hao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Surveying and Mapping", 
          "id": "https://www.grid.ac/institutes/grid.464302.7", 
          "name": [
            "Xi\u2019an Research Institute of Surveying and Mapping, 710054, Xi\u2019an, China", 
            "State Key Laboratory of Geo-Information Engineering, 710054, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Dong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xi'an Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.43169.39", 
          "name": [
            "School of Electronic Information and Engineering, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Wei-Guo", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/1073970.1073974", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009824540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2400682.2400711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022897646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/305138.305245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036509218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1772954.1772982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043586173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-78791-4_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043923530", 
          "https://doi.org/10.1007/978-3-540-78791-4_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-78791-4_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043923530", 
          "https://doi.org/10.1007/978-3-540-78791-4_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2925426.2926288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048777637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2160910.2160912", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049004084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11432-016-5588-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050885772", 
          "https://doi.org/10.1007/s11432-016-5588-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11432-016-5588-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050885772", 
          "https://doi.org/10.1007/s11432-016-5588-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-85268-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052611896", 
          "https://doi.org/10.1007/978-3-540-85268-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1052611896", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-32820-6_23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052949058", 
          "https://doi.org/10.1007/978-3-642-32820-6_23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/52.1992", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061185277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/71.503771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061217528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/71.503776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061217533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/71.86104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061217990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tc.1987.5009499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061533623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/pact.1997.644017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093194371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ipps.1994.288260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095050385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpp.1994.186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095377584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/sc.2000.10015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095456929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/602770.602857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098817542"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "DOACROSS loops are significant parts in many important scientific and engineering applications, which are generally exploited pipeline/wave-front parallelism by loop transformations. However, previous work almost statically performs iterations in parallel threads, thus causing a waste of computing resources in thread synchronization. This paper proposes a brand-new parallel strategy for DOACROSS loops that provides a dynamic task assignment with reduced dependences to achieve wave-front parallelism through loop tiling. The proposed strategy uses a master-slave parallel mode and some customized structures to realize dynamic and flexible parallelization, which effectively avoids threads from waiting in communication. An efficient tile size selection (TSS) approach is also proposed to preserve data reuse in cache for tiled codes. The experimental results show that the proposed parallel strategy obtains good and stable speedups over six typical benchmarks with different problem sizes and different numbers of threads on an Intel\u00ae Xeon\u00ae 32-core server. And it outperforms two static strategies, a barrier-based strategy and a post/wait-based strategy, by 32% and 20% in average performance, respectively. This strategy also yields a better performance than a mutex-based dynamic strategy. Besides, it has been demonstrated that the proposed TSS approach can achieve a near-optimal performance and is comparable with a state-of-the-art TSS approach.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11390-019-1919-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1320078", 
        "issn": [
          "1666-6046", 
          "1666-6038"
        ], 
        "name": "Journal of Computer Science and Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "34"
      }
    ], 
    "name": "Revisiting the Parallel Strategy for DOACROSS Loops", 
    "pagination": "456-475", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a7d0eba8b06bc9e8981b390776347ddd90f6583346ed18da3c072307732637bc"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11390-019-1919-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113046554"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11390-019-1919-7", 
      "https://app.dimensions.ai/details/publication/pub.1113046554"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78934_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11390-019-1919-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11390-019-1919-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11390-019-1919-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11390-019-1919-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11390-019-1919-7'


 

This table displays all metadata directly associated to this object as RDF triples.

163 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11390-019-1919-7 schema:about anzsrc-for:08
2 anzsrc-for:0803
3 schema:author N0865e13df67543babaa11512f0683f9f
4 schema:citation sg:pub.10.1007/978-3-540-78791-4_9
5 sg:pub.10.1007/978-3-540-85268-1
6 sg:pub.10.1007/978-3-642-32820-6_23
7 sg:pub.10.1007/s11432-016-5588-7
8 https://app.dimensions.ai/details/publication/pub.1052611896
9 https://doi.org/10.1109/52.1992
10 https://doi.org/10.1109/71.503771
11 https://doi.org/10.1109/71.503776
12 https://doi.org/10.1109/71.86104
13 https://doi.org/10.1109/icpp.1994.186
14 https://doi.org/10.1109/ipps.1994.288260
15 https://doi.org/10.1109/pact.1997.644017
16 https://doi.org/10.1109/sc.2000.10015
17 https://doi.org/10.1109/tc.1987.5009499
18 https://doi.org/10.1145/1073970.1073974
19 https://doi.org/10.1145/1772954.1772982
20 https://doi.org/10.1145/2160910.2160912
21 https://doi.org/10.1145/2400682.2400711
22 https://doi.org/10.1145/2925426.2926288
23 https://doi.org/10.1145/305138.305245
24 https://doi.org/10.1145/602770.602857
25 schema:datePublished 2019-03
26 schema:datePublishedReg 2019-03-01
27 schema:description DOACROSS loops are significant parts in many important scientific and engineering applications, which are generally exploited pipeline/wave-front parallelism by loop transformations. However, previous work almost statically performs iterations in parallel threads, thus causing a waste of computing resources in thread synchronization. This paper proposes a brand-new parallel strategy for DOACROSS loops that provides a dynamic task assignment with reduced dependences to achieve wave-front parallelism through loop tiling. The proposed strategy uses a master-slave parallel mode and some customized structures to realize dynamic and flexible parallelization, which effectively avoids threads from waiting in communication. An efficient tile size selection (TSS) approach is also proposed to preserve data reuse in cache for tiled codes. The experimental results show that the proposed parallel strategy obtains good and stable speedups over six typical benchmarks with different problem sizes and different numbers of threads on an Intel® Xeon® 32-core server. And it outperforms two static strategies, a barrier-based strategy and a post/wait-based strategy, by 32% and 20% in average performance, respectively. This strategy also yields a better performance than a mutex-based dynamic strategy. Besides, it has been demonstrated that the proposed TSS approach can achieve a near-optimal performance and is comparable with a state-of-the-art TSS approach.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf N81d5060baedd4189949a8e8bce04c2ab
32 N999deb777e834244b5c6a5dc42b5fad3
33 sg:journal.1320078
34 schema:name Revisiting the Parallel Strategy for DOACROSS Loops
35 schema:pagination 456-475
36 schema:productId N467023cdec7641938ff394e2bc4ae01c
37 Ne8b3fa6313a64523a03e1632c10df3da
38 Nf85e4cbe14704b31add7da0b8217d501
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113046554
40 https://doi.org/10.1007/s11390-019-1919-7
41 schema:sdDatePublished 2019-04-11T13:17
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N084fd2ad275a4e9da54a78a6b522c7d0
44 schema:url https://link.springer.com/10.1007%2Fs11390-019-1919-7
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N084fd2ad275a4e9da54a78a6b522c7d0 schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 N0865e13df67543babaa11512f0683f9f rdf:first Nbb1879c8dd0d491bb8fd427c15495524
51 rdf:rest Nda7bbb456abf483f8e43eb7064f0aea0
52 N22f938e1e9134318b51fedfc7b694493 rdf:first Ncdb8f43d012145ada10abad5f1cc30e9
53 rdf:rest Nfebbe175a1cc4f8b80bf3ea6c5e685f5
54 N2f86dd0f01154d418afa852355bc7e90 rdf:first N60a56cdc8d6c40508c34882e8f9973dd
55 rdf:rest N22f938e1e9134318b51fedfc7b694493
56 N467023cdec7641938ff394e2bc4ae01c schema:name doi
57 schema:value 10.1007/s11390-019-1919-7
58 rdf:type schema:PropertyValue
59 N60a56cdc8d6c40508c34882e8f9973dd schema:affiliation https://www.grid.ac/institutes/grid.39436.3b
60 schema:familyName Zhu
61 schema:givenName Wen-Hao
62 rdf:type schema:Person
63 N79f901fe81b5411296da51fecac72781 rdf:first Nc045efb55bf14f38a4ea65f3d41a1e94
64 rdf:rest N2f86dd0f01154d418afa852355bc7e90
65 N7e5c542ea3f4481eae0086c007930be5 schema:affiliation https://www.grid.ac/institutes/grid.43169.39
66 schema:familyName Cui
67 schema:givenName Yuan-Zhen
68 rdf:type schema:Person
69 N81d5060baedd4189949a8e8bce04c2ab schema:volumeNumber 34
70 rdf:type schema:PublicationVolume
71 N999deb777e834244b5c6a5dc42b5fad3 schema:issueNumber 2
72 rdf:type schema:PublicationIssue
73 Nbb1879c8dd0d491bb8fd427c15495524 schema:affiliation https://www.grid.ac/institutes/grid.43169.39
74 schema:familyName Liu
75 schema:givenName Song
76 rdf:type schema:Person
77 Nc045efb55bf14f38a4ea65f3d41a1e94 schema:affiliation https://www.grid.ac/institutes/grid.43169.39
78 schema:familyName Zou
79 schema:givenName Nian-Jun
80 rdf:type schema:Person
81 Ncdb8f43d012145ada10abad5f1cc30e9 schema:affiliation https://www.grid.ac/institutes/grid.464302.7
82 schema:familyName Zhang
83 schema:givenName Dong
84 rdf:type schema:Person
85 Nda7bbb456abf483f8e43eb7064f0aea0 rdf:first N7e5c542ea3f4481eae0086c007930be5
86 rdf:rest N79f901fe81b5411296da51fecac72781
87 Ne8b3fa6313a64523a03e1632c10df3da schema:name dimensions_id
88 schema:value pub.1113046554
89 rdf:type schema:PropertyValue
90 Nefba30e40db24f4bafb17590740e6161 schema:affiliation https://www.grid.ac/institutes/grid.43169.39
91 schema:familyName Wu
92 schema:givenName Wei-Guo
93 rdf:type schema:Person
94 Nf85e4cbe14704b31add7da0b8217d501 schema:name readcube_id
95 schema:value a7d0eba8b06bc9e8981b390776347ddd90f6583346ed18da3c072307732637bc
96 rdf:type schema:PropertyValue
97 Nfebbe175a1cc4f8b80bf3ea6c5e685f5 rdf:first Nefba30e40db24f4bafb17590740e6161
98 rdf:rest rdf:nil
99 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
100 schema:name Information and Computing Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0803 schema:inDefinedTermSet anzsrc-for:
103 schema:name Computer Software
104 rdf:type schema:DefinedTerm
105 sg:journal.1320078 schema:issn 1666-6038
106 1666-6046
107 schema:name Journal of Computer Science and Technology
108 rdf:type schema:Periodical
109 sg:pub.10.1007/978-3-540-78791-4_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043923530
110 https://doi.org/10.1007/978-3-540-78791-4_9
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/978-3-540-85268-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052611896
113 https://doi.org/10.1007/978-3-540-85268-1
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/978-3-642-32820-6_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052949058
116 https://doi.org/10.1007/978-3-642-32820-6_23
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s11432-016-5588-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050885772
119 https://doi.org/10.1007/s11432-016-5588-7
120 rdf:type schema:CreativeWork
121 https://app.dimensions.ai/details/publication/pub.1052611896 schema:CreativeWork
122 https://doi.org/10.1109/52.1992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061185277
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1109/71.503771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061217528
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1109/71.503776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061217533
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1109/71.86104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061217990
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1109/icpp.1994.186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095377584
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1109/ipps.1994.288260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095050385
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1109/pact.1997.644017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093194371
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1109/sc.2000.10015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095456929
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/tc.1987.5009499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061533623
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1145/1073970.1073974 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009824540
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1145/1772954.1772982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043586173
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1145/2160910.2160912 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049004084
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1145/2400682.2400711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022897646
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1145/2925426.2926288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048777637
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1145/305138.305245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036509218
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1145/602770.602857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098817542
153 rdf:type schema:CreativeWork
154 https://www.grid.ac/institutes/grid.39436.3b schema:alternateName Shanghai University
155 schema:name School of Computer Engineering and Science, Shanghai University, 200444, Shanghai, China
156 rdf:type schema:Organization
157 https://www.grid.ac/institutes/grid.43169.39 schema:alternateName Xi'an Jiaotong University
158 schema:name School of Electronic Information and Engineering, Xi’an Jiaotong University, 710049, Xi’an, China
159 rdf:type schema:Organization
160 https://www.grid.ac/institutes/grid.464302.7 schema:alternateName Chinese Academy of Surveying and Mapping
161 schema:name State Key Laboratory of Geo-Information Engineering, 710054, Xi’an, China
162 Xi’an Research Institute of Surveying and Mapping, 710054, Xi’an, China
163 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...