A 2-Stage Strategy for Non-Stationary Signal Prediction and Recovery Using Iterative Filtering and Neural Network View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Feng Zhou, Hao-Min Zhou, Zhi-Hua Yang, Li-Hua Yang

ABSTRACT

Predicting the future information and recovering the missing data for time series are two vital tasks faced in various application fields. They are often subjected to big challenges, especially when the signal is nonlinear and non-stationary which is common in practice. In this paper, we propose a hybrid 2-stage approach, named IF2FNN, to predict (including short-term and long-term predictions) and recover the general types of time series. In the first stage, we decompose the original non-stationary series into several “quasi stationary” intrinsic mode functions (IMFs) by the iterative filtering (IF) method. In the second stage, all of the IMFs are fed as the inputs to the factorization machine based neural network model to perform the prediction and recovery. We test the strategy on five datasets including an artificial constructed signal (ACS), and four real-world signals: the length of day (LOD), the northern hemisphere land-ocean temperature index (NHLTI), the troposphere monthly mean temperature (TMMT), and the national association of securities dealers automated quotations index (NASDAQ). The results are compared with those obtained from the other prevailing methods. Our experiments indicate that under the same conditions, the proposed method outperforms the others for prediction and recovery according to various metrics such as mean absolute error (MAE), root mean square error (RMSE), and mean absolute percentage error (MAPE). More... »

PAGES

318-338

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11390-019-1913-0

DOI

http://dx.doi.org/10.1007/s11390-019-1913-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113043057


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Guangdong University Of Finances and Economics", 
          "id": "https://www.grid.ac/institutes/grid.443372.5", 
          "name": [
            "School of Information Science, Guangdong University of Finance and Economics, 510320, Guangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Feng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Georgia Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.213917.f", 
          "name": [
            "School of Mathematics, Georgia Institute of Technology, 30332, Atlanta, GA, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Hao-Min", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Guangdong University Of Finances and Economics", 
          "id": "https://www.grid.ac/institutes/grid.443372.5", 
          "name": [
            "School of Information Science, Guangdong University of Finance and Economics, 510320, Guangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Zhi-Hua", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sun Yat-sen University", 
          "id": "https://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Guangdong Province Key Laboratory of Computational Science, 510275, Guangzhou, China", 
            "School of Mathematics, Sun Yat-sen University, 510275, Guangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Li-Hua", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0169-2070(93)90079-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001296929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0957-4174(01)00047-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001476387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2014.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002955962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-7643-7778-6_40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005221518", 
          "https://doi.org/10.1007/978-3-7643-7778-6_40"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-2070(98)00053-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006352858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2011.04.222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006748306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010020120", 
          "https://doi.org/10.1038/nature14539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acha.2016.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013404771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acha.2016.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013404771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-9236(03)00089-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016427840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-9236(03)00089-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016427840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acha.2010.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018734659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2939672.2939785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021899069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0957-4174(01)00058-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022979713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijforecast.2003.09.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025590138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.fluid.31.1.417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026690805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-2312(00)00364-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027937937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engappai.2009.09.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028333610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.dss.2012.11.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028471066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-2312(01)00702-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028809124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0957-4174(02)00079-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030261606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0957-4174(02)00079-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030261606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdm.2010.127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032666929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0305-0548(02)00037-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033237069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0957-4174(99)00042-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033349401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.renene.2012.06.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035454544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0957-4174(00)00027-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037210387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-59497-3_175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037868120", 
          "https://doi.org/10.1007/3-540-59497-3_175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-2312(03)00372-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038911658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-2312(03)00372-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038911658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2005.0058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039359565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.9.4816", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039553374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2016.01.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040924535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sigpro.2015.10.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047301364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1645953.1646301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048210894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1998.0193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048418364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-2070(01)00093-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050445747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2005.06.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050490256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2005.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051499086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2005.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051499086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)cp.1943-5487.0000621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057627939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/qam/15914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059347507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/91.995117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061248135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lsp.2003.821662", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061376228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lsp.2005.856878", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061376619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lsp.2009.2025925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061377532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lsp.2009.2038770", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061377666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/msp.2012.2205597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061423808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2016.2572683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061745111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2016.2577031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061745117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2010.2041606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061802043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s1758825109000083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063018494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s179353690900028x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063022945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/mnsc.6.3.324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064722475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3001525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070163836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpwrs.2017.2694705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084868271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4208/nmtma.2017.s05", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085383721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2015.123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093828312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icig.2004.129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095551150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2018.07.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105900478"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "Predicting the future information and recovering the missing data for time series are two vital tasks faced in various application fields. They are often subjected to big challenges, especially when the signal is nonlinear and non-stationary which is common in practice. In this paper, we propose a hybrid 2-stage approach, named IF2FNN, to predict (including short-term and long-term predictions) and recover the general types of time series. In the first stage, we decompose the original non-stationary series into several \u201cquasi stationary\u201d intrinsic mode functions (IMFs) by the iterative filtering (IF) method. In the second stage, all of the IMFs are fed as the inputs to the factorization machine based neural network model to perform the prediction and recovery. We test the strategy on five datasets including an artificial constructed signal (ACS), and four real-world signals: the length of day (LOD), the northern hemisphere land-ocean temperature index (NHLTI), the troposphere monthly mean temperature (TMMT), and the national association of securities dealers automated quotations index (NASDAQ). The results are compared with those obtained from the other prevailing methods. Our experiments indicate that under the same conditions, the proposed method outperforms the others for prediction and recovery according to various metrics such as mean absolute error (MAE), root mean square error (RMSE), and mean absolute percentage error (MAPE).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11390-019-1913-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1320078", 
        "issn": [
          "1666-6046", 
          "1666-6038"
        ], 
        "name": "Journal of Computer Science and Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "34"
      }
    ], 
    "name": "A 2-Stage Strategy for Non-Stationary Signal Prediction and Recovery Using Iterative Filtering and Neural Network", 
    "pagination": "318-338", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3fefc75d57b6b767067318fb20f4dd2aacdb5481913f3577a6e842912cfde14a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11390-019-1913-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113043057"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11390-019-1913-0", 
      "https://app.dimensions.ai/details/publication/pub.1113043057"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78953_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11390-019-1913-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11390-019-1913-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11390-019-1913-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11390-019-1913-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11390-019-1913-0'


 

This table displays all metadata directly associated to this object as RDF triples.

253 TRIPLES      21 PREDICATES      82 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11390-019-1913-0 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N327541264de740c0896ea1fec591b247
4 schema:citation sg:pub.10.1007/3-540-59497-3_175
5 sg:pub.10.1007/978-3-7643-7778-6_40
6 sg:pub.10.1038/nature14539
7 https://doi.org/10.1016/0169-2070(93)90079-3
8 https://doi.org/10.1016/j.acha.2010.08.002
9 https://doi.org/10.1016/j.acha.2016.03.001
10 https://doi.org/10.1016/j.asoc.2016.01.027
11 https://doi.org/10.1016/j.dss.2012.11.012
12 https://doi.org/10.1016/j.engappai.2009.09.015
13 https://doi.org/10.1016/j.eswa.2005.06.024
14 https://doi.org/10.1016/j.eswa.2005.09.002
15 https://doi.org/10.1016/j.eswa.2011.04.222
16 https://doi.org/10.1016/j.eswa.2014.12.003
17 https://doi.org/10.1016/j.eswa.2018.07.065
18 https://doi.org/10.1016/j.ijforecast.2003.09.015
19 https://doi.org/10.1016/j.renene.2012.06.012
20 https://doi.org/10.1016/j.sigpro.2015.10.022
21 https://doi.org/10.1016/s0167-9236(03)00089-7
22 https://doi.org/10.1016/s0169-2070(01)00093-0
23 https://doi.org/10.1016/s0169-2070(98)00053-3
24 https://doi.org/10.1016/s0305-0548(02)00037-0
25 https://doi.org/10.1016/s0925-2312(00)00364-7
26 https://doi.org/10.1016/s0925-2312(01)00702-0
27 https://doi.org/10.1016/s0925-2312(03)00372-2
28 https://doi.org/10.1016/s0957-4174(00)00027-0
29 https://doi.org/10.1016/s0957-4174(01)00047-1
30 https://doi.org/10.1016/s0957-4174(01)00058-6
31 https://doi.org/10.1016/s0957-4174(02)00079-9
32 https://doi.org/10.1016/s0957-4174(99)00042-1
33 https://doi.org/10.1061/(asce)cp.1943-5487.0000621
34 https://doi.org/10.1073/pnas.95.9.4816
35 https://doi.org/10.1090/qam/15914
36 https://doi.org/10.1098/rsif.2005.0058
37 https://doi.org/10.1098/rspa.1998.0193
38 https://doi.org/10.1109/91.995117
39 https://doi.org/10.1109/iccv.2015.123
40 https://doi.org/10.1109/icdm.2010.127
41 https://doi.org/10.1109/icig.2004.129
42 https://doi.org/10.1109/lsp.2003.821662
43 https://doi.org/10.1109/lsp.2005.856878
44 https://doi.org/10.1109/lsp.2009.2025925
45 https://doi.org/10.1109/lsp.2009.2038770
46 https://doi.org/10.1109/msp.2012.2205597
47 https://doi.org/10.1109/tpami.2016.2572683
48 https://doi.org/10.1109/tpami.2016.2577031
49 https://doi.org/10.1109/tpwrs.2017.2694705
50 https://doi.org/10.1109/tsp.2010.2041606
51 https://doi.org/10.1142/s1758825109000083
52 https://doi.org/10.1142/s179353690900028x
53 https://doi.org/10.1145/1645953.1646301
54 https://doi.org/10.1145/2939672.2939785
55 https://doi.org/10.1146/annurev.fluid.31.1.417
56 https://doi.org/10.1287/mnsc.6.3.324
57 https://doi.org/10.2307/3001525
58 https://doi.org/10.4208/nmtma.2017.s05
59 schema:datePublished 2019-03
60 schema:datePublishedReg 2019-03-01
61 schema:description Predicting the future information and recovering the missing data for time series are two vital tasks faced in various application fields. They are often subjected to big challenges, especially when the signal is nonlinear and non-stationary which is common in practice. In this paper, we propose a hybrid 2-stage approach, named IF2FNN, to predict (including short-term and long-term predictions) and recover the general types of time series. In the first stage, we decompose the original non-stationary series into several “quasi stationary” intrinsic mode functions (IMFs) by the iterative filtering (IF) method. In the second stage, all of the IMFs are fed as the inputs to the factorization machine based neural network model to perform the prediction and recovery. We test the strategy on five datasets including an artificial constructed signal (ACS), and four real-world signals: the length of day (LOD), the northern hemisphere land-ocean temperature index (NHLTI), the troposphere monthly mean temperature (TMMT), and the national association of securities dealers automated quotations index (NASDAQ). The results are compared with those obtained from the other prevailing methods. Our experiments indicate that under the same conditions, the proposed method outperforms the others for prediction and recovery according to various metrics such as mean absolute error (MAE), root mean square error (RMSE), and mean absolute percentage error (MAPE).
62 schema:genre research_article
63 schema:inLanguage en
64 schema:isAccessibleForFree false
65 schema:isPartOf N0a7dfc8ba2dc4bc098a2133e5d599cf5
66 N9e07fc1cd381418e945d0edf2fe32c13
67 sg:journal.1320078
68 schema:name A 2-Stage Strategy for Non-Stationary Signal Prediction and Recovery Using Iterative Filtering and Neural Network
69 schema:pagination 318-338
70 schema:productId N073d757b10524de2a86bde20208ac56c
71 N26df238b0e3448568fca34d42149f83e
72 N6316ee2171fb447cb269d2482f2dd643
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113043057
74 https://doi.org/10.1007/s11390-019-1913-0
75 schema:sdDatePublished 2019-04-11T13:19
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher Nb5ca566f383e48848fa7307a5bdd8ea9
78 schema:url https://link.springer.com/10.1007%2Fs11390-019-1913-0
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N073d757b10524de2a86bde20208ac56c schema:name readcube_id
83 schema:value 3fefc75d57b6b767067318fb20f4dd2aacdb5481913f3577a6e842912cfde14a
84 rdf:type schema:PropertyValue
85 N0a7dfc8ba2dc4bc098a2133e5d599cf5 schema:volumeNumber 34
86 rdf:type schema:PublicationVolume
87 N1bb5c347a1064f6292c0565f39179dc2 rdf:first N47d00ace6305499cb1d5aa05f3e19a69
88 rdf:rest rdf:nil
89 N26df238b0e3448568fca34d42149f83e schema:name dimensions_id
90 schema:value pub.1113043057
91 rdf:type schema:PropertyValue
92 N327541264de740c0896ea1fec591b247 rdf:first Nf1a520c2ce9348c284d2b6874b425a04
93 rdf:rest N4d18900cf46446e68ca6ee830c4a3af0
94 N47d00ace6305499cb1d5aa05f3e19a69 schema:affiliation https://www.grid.ac/institutes/grid.12981.33
95 schema:familyName Yang
96 schema:givenName Li-Hua
97 rdf:type schema:Person
98 N4d18900cf46446e68ca6ee830c4a3af0 rdf:first Nf98acf4d6dbd40719b259da3202ef379
99 rdf:rest Nc5d4be871fa246c7a8783ac6090bbc40
100 N6316ee2171fb447cb269d2482f2dd643 schema:name doi
101 schema:value 10.1007/s11390-019-1913-0
102 rdf:type schema:PropertyValue
103 N9e07fc1cd381418e945d0edf2fe32c13 schema:issueNumber 2
104 rdf:type schema:PublicationIssue
105 Na5c56f7fdf8d4d82a1809966bbf3f000 schema:affiliation https://www.grid.ac/institutes/grid.443372.5
106 schema:familyName Yang
107 schema:givenName Zhi-Hua
108 rdf:type schema:Person
109 Nb5ca566f383e48848fa7307a5bdd8ea9 schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 Nc5d4be871fa246c7a8783ac6090bbc40 rdf:first Na5c56f7fdf8d4d82a1809966bbf3f000
112 rdf:rest N1bb5c347a1064f6292c0565f39179dc2
113 Nf1a520c2ce9348c284d2b6874b425a04 schema:affiliation https://www.grid.ac/institutes/grid.443372.5
114 schema:familyName Zhou
115 schema:givenName Feng
116 rdf:type schema:Person
117 Nf98acf4d6dbd40719b259da3202ef379 schema:affiliation https://www.grid.ac/institutes/grid.213917.f
118 schema:familyName Zhou
119 schema:givenName Hao-Min
120 rdf:type schema:Person
121 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
122 schema:name Information and Computing Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
125 schema:name Artificial Intelligence and Image Processing
126 rdf:type schema:DefinedTerm
127 sg:journal.1320078 schema:issn 1666-6038
128 1666-6046
129 schema:name Journal of Computer Science and Technology
130 rdf:type schema:Periodical
131 sg:pub.10.1007/3-540-59497-3_175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037868120
132 https://doi.org/10.1007/3-540-59497-3_175
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/978-3-7643-7778-6_40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005221518
135 https://doi.org/10.1007/978-3-7643-7778-6_40
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/nature14539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010020120
138 https://doi.org/10.1038/nature14539
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/0169-2070(93)90079-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001296929
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.acha.2010.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018734659
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.acha.2016.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013404771
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.asoc.2016.01.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040924535
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.dss.2012.11.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028471066
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.engappai.2009.09.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028333610
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.eswa.2005.06.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050490256
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.eswa.2005.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051499086
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.eswa.2011.04.222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006748306
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.eswa.2014.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002955962
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.eswa.2018.07.065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105900478
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.ijforecast.2003.09.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025590138
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.renene.2012.06.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035454544
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.sigpro.2015.10.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047301364
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/s0167-9236(03)00089-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016427840
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/s0169-2070(01)00093-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050445747
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/s0169-2070(98)00053-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006352858
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/s0305-0548(02)00037-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033237069
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/s0925-2312(00)00364-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027937937
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/s0925-2312(01)00702-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028809124
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/s0925-2312(03)00372-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038911658
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/s0957-4174(00)00027-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037210387
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/s0957-4174(01)00047-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001476387
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/s0957-4174(01)00058-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022979713
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/s0957-4174(02)00079-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030261606
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/s0957-4174(99)00042-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033349401
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1061/(asce)cp.1943-5487.0000621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057627939
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1073/pnas.95.9.4816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039553374
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1090/qam/15914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059347507
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1098/rsif.2005.0058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039359565
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1098/rspa.1998.0193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048418364
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1109/91.995117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061248135
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1109/iccv.2015.123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093828312
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1109/icdm.2010.127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032666929
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1109/icig.2004.129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095551150
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1109/lsp.2003.821662 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061376228
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1109/lsp.2005.856878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061376619
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1109/lsp.2009.2025925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061377532
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1109/lsp.2009.2038770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061377666
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1109/msp.2012.2205597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061423808
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1109/tpami.2016.2572683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061745111
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1109/tpami.2016.2577031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061745117
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1109/tpwrs.2017.2694705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084868271
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1109/tsp.2010.2041606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061802043
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1142/s1758825109000083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063018494
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1142/s179353690900028x schema:sameAs https://app.dimensions.ai/details/publication/pub.1063022945
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1145/1645953.1646301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048210894
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1145/2939672.2939785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021899069
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1146/annurev.fluid.31.1.417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026690805
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1287/mnsc.6.3.324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064722475
239 rdf:type schema:CreativeWork
240 https://doi.org/10.2307/3001525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070163836
241 rdf:type schema:CreativeWork
242 https://doi.org/10.4208/nmtma.2017.s05 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085383721
243 rdf:type schema:CreativeWork
244 https://www.grid.ac/institutes/grid.12981.33 schema:alternateName Sun Yat-sen University
245 schema:name Guangdong Province Key Laboratory of Computational Science, 510275, Guangzhou, China
246 School of Mathematics, Sun Yat-sen University, 510275, Guangzhou, China
247 rdf:type schema:Organization
248 https://www.grid.ac/institutes/grid.213917.f schema:alternateName Georgia Institute of Technology
249 schema:name School of Mathematics, Georgia Institute of Technology, 30332, Atlanta, GA, U.S.A.
250 rdf:type schema:Organization
251 https://www.grid.ac/institutes/grid.443372.5 schema:alternateName Guangdong University Of Finances and Economics
252 schema:name School of Information Science, Guangdong University of Finance and Economics, 510320, Guangzhou, China
253 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...