A Task Allocation Method for Stream Processing with Recovery Latency Constraint View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11

AUTHORS

Hong-Liang Li, Jie Wu, Zhen Jiang, Xiang Li, Xiao-Hui Wei

ABSTRACT

Stream processing applications continuously process large amounts of online streaming data in real time or near real time. They have strict latency constraints. However, the continuous processing makes them vulnerable to any failures, and the recoveries may slow down the entire processing pipeline and break latency constraints. The upstream backup scheme is one of the most widely applied fault-tolerant schemes for stream processing systems. It introduces complex backup dependencies to tasks, which increases the difficulty of controlling recovery latencies. Moreover, when dependent tasks are located on the same processor, they fail at the same time in processor-level failures, bringing extra recovery latencies that increase the impacts of failures. This paper studies the relationship between the task allocation and the recovery latency of a stream processing application. We present a correlated failure effect model to describe the recovery latency of a stream topology in processor-level failures under a task allocation plan. We introduce a recovery-latency aware task allocation problem (RTAP) that seeks task allocation plans for stream topologies that will achieve guaranteed recovery latencies. We discuss the difference between RTAP and classic task allocation problems and present a heuristic algorithm with a computational complexity of O(n log2n) to solve the problem. Extensive experiments were conducted to verify the correctness and effectiveness of our approach. It improves the resource usage by 15%–20% on average. More... »

PAGES

1125-1139

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11390-018-1876-6

DOI

http://dx.doi.org/10.1007/s11390-018-1876-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110033157


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Temple University", 
          "id": "https://www.grid.ac/institutes/grid.264727.2", 
          "name": [
            "College of Computer Science and Technology, Jilin University, 130012, Changchun, China", 
            "Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education, 130012, Changchun, China", 
            "Department of Computer and Information Sciences, Temple University, 19122, Philadelphia, PA, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Hong-Liang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Temple University", 
          "id": "https://www.grid.ac/institutes/grid.264727.2", 
          "name": [
            "Department of Computer and Information Sciences, Temple University, 19122, Philadelphia, PA, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Jie", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "West Chester University", 
          "id": "https://www.grid.ac/institutes/grid.268132.c", 
          "name": [
            "Department of Computer Science, West Chester University of Pennsylvania, 19383, West Chester, PA, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Zhen", 
        "id": "sg:person.014746007677.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014746007677.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jilin University", 
          "id": "https://www.grid.ac/institutes/grid.64924.3d", 
          "name": [
            "College of Computer Science and Technology, Jilin University, 130012, Changchun, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Xiang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jilin University", 
          "id": "https://www.grid.ac/institutes/grid.64924.3d", 
          "name": [
            "College of Computer Science and Technology, Jilin University, 130012, Changchun, China", 
            "Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education, 130012, Changchun, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wei", 
        "givenName": "Xiao-Hui", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/1989323.1989350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000975391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-0000(74)80044-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000999206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/872757.872789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001262233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2463676.2465272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001474693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2674026.2674028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003320822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2588555.2595641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011686270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2661829.2661882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011754334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cosrev.2016.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013347914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2723372.2742788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013804236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2465351.2465353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015991543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2933267.2933312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017457549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jss.2016.08.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018598520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/872757.872857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019022800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/800152.804907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024017488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1107499.1107504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029230064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0377-2217(02)00123-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030478254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2723372.2749437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032270790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/872757.872854", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036451105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1999995.2000008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037341469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1331904.1331907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039080811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/361147.361115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041460956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcss.2016.10.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043435972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-7997-1_35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047658800", 
          "https://doi.org/10.1007/978-1-4419-7997-1_35"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2463676.2465282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047707600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2675743.2771831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053737749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/12.588063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061088605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbdata.2016.2638860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061523341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2007.1056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061661662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0603007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062848732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/ijoc.1120.0499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064706949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14778/2536222.2536229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067368174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10586-017-0870-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085075631", 
          "https://doi.org/10.1007/s10586-017-0870-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10586-017-0870-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085075631", 
          "https://doi.org/10.1007/s10586-017-0870-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3837/tiis.2017.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085521885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tr.2017.2712563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1087303136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10586-017-1011-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090325524", 
          "https://doi.org/10.1007/s10586-017-1011-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10586-017-1011-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090325524", 
          "https://doi.org/10.1007/s10586-017-1011-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdcs.2015.48", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093251716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpads.2015.106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094120693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdmw.2010.172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094212263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icde.2016.7498267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094596428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cluster.2017.10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095218809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/infocom.2016.7524433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095389335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icde.2005.72", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095475136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/pccc.2017.8280443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100848492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icccn.2018.8487327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107558425"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11", 
    "datePublishedReg": "2018-11-01", 
    "description": "Stream processing applications continuously process large amounts of online streaming data in real time or near real time. They have strict latency constraints. However, the continuous processing makes them vulnerable to any failures, and the recoveries may slow down the entire processing pipeline and break latency constraints. The upstream backup scheme is one of the most widely applied fault-tolerant schemes for stream processing systems. It introduces complex backup dependencies to tasks, which increases the difficulty of controlling recovery latencies. Moreover, when dependent tasks are located on the same processor, they fail at the same time in processor-level failures, bringing extra recovery latencies that increase the impacts of failures. This paper studies the relationship between the task allocation and the recovery latency of a stream processing application. We present a correlated failure effect model to describe the recovery latency of a stream topology in processor-level failures under a task allocation plan. We introduce a recovery-latency aware task allocation problem (RTAP) that seeks task allocation plans for stream topologies that will achieve guaranteed recovery latencies. We discuss the difference between RTAP and classic task allocation problems and present a heuristic algorithm with a computational complexity of O(n log2n) to solve the problem. Extensive experiments were conducted to verify the correctness and effectiveness of our approach. It improves the resource usage by 15%\u201320% on average.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11390-018-1876-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1320078", 
        "issn": [
          "1666-6046", 
          "1666-6038"
        ], 
        "name": "Journal of Computer Science and Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "33"
      }
    ], 
    "name": "A Task Allocation Method for Stream Processing with Recovery Latency Constraint", 
    "pagination": "1125-1139", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8491f4648ed917ba419c42f2e702d33f49abfdf1a1a409fe9b41f3f79932d070"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11390-018-1876-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110033157"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11390-018-1876-6", 
      "https://app.dimensions.ai/details/publication/pub.1110033157"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000267_0000000267/records_56093_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11390-018-1876-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11390-018-1876-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11390-018-1876-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11390-018-1876-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11390-018-1876-6'


 

This table displays all metadata directly associated to this object as RDF triples.

229 TRIPLES      21 PREDICATES      71 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11390-018-1876-6 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author N2819b6da5bbd40a6a67331d7a4655697
4 schema:citation sg:pub.10.1007/978-1-4419-7997-1_35
5 sg:pub.10.1007/s10586-017-0870-z
6 sg:pub.10.1007/s10586-017-1011-4
7 https://doi.org/10.1016/j.cosrev.2016.12.001
8 https://doi.org/10.1016/j.jcss.2016.10.010
9 https://doi.org/10.1016/j.jss.2016.08.037
10 https://doi.org/10.1016/s0022-0000(74)80044-9
11 https://doi.org/10.1016/s0377-2217(02)00123-6
12 https://doi.org/10.1109/12.588063
13 https://doi.org/10.1109/cluster.2017.10
14 https://doi.org/10.1109/icccn.2018.8487327
15 https://doi.org/10.1109/icdcs.2015.48
16 https://doi.org/10.1109/icde.2005.72
17 https://doi.org/10.1109/icde.2016.7498267
18 https://doi.org/10.1109/icdmw.2010.172
19 https://doi.org/10.1109/icpads.2015.106
20 https://doi.org/10.1109/infocom.2016.7524433
21 https://doi.org/10.1109/pccc.2017.8280443
22 https://doi.org/10.1109/tbdata.2016.2638860
23 https://doi.org/10.1109/tkde.2007.1056
24 https://doi.org/10.1109/tr.2017.2712563
25 https://doi.org/10.1137/0603007
26 https://doi.org/10.1145/1107499.1107504
27 https://doi.org/10.1145/1331904.1331907
28 https://doi.org/10.1145/1989323.1989350
29 https://doi.org/10.1145/1999995.2000008
30 https://doi.org/10.1145/2463676.2465272
31 https://doi.org/10.1145/2463676.2465282
32 https://doi.org/10.1145/2465351.2465353
33 https://doi.org/10.1145/2588555.2595641
34 https://doi.org/10.1145/2661829.2661882
35 https://doi.org/10.1145/2674026.2674028
36 https://doi.org/10.1145/2675743.2771831
37 https://doi.org/10.1145/2723372.2742788
38 https://doi.org/10.1145/2723372.2749437
39 https://doi.org/10.1145/2933267.2933312
40 https://doi.org/10.1145/361147.361115
41 https://doi.org/10.1145/800152.804907
42 https://doi.org/10.1145/872757.872789
43 https://doi.org/10.1145/872757.872854
44 https://doi.org/10.1145/872757.872857
45 https://doi.org/10.1287/ijoc.1120.0499
46 https://doi.org/10.14778/2536222.2536229
47 https://doi.org/10.3837/tiis.2017.04.008
48 schema:datePublished 2018-11
49 schema:datePublishedReg 2018-11-01
50 schema:description Stream processing applications continuously process large amounts of online streaming data in real time or near real time. They have strict latency constraints. However, the continuous processing makes them vulnerable to any failures, and the recoveries may slow down the entire processing pipeline and break latency constraints. The upstream backup scheme is one of the most widely applied fault-tolerant schemes for stream processing systems. It introduces complex backup dependencies to tasks, which increases the difficulty of controlling recovery latencies. Moreover, when dependent tasks are located on the same processor, they fail at the same time in processor-level failures, bringing extra recovery latencies that increase the impacts of failures. This paper studies the relationship between the task allocation and the recovery latency of a stream processing application. We present a correlated failure effect model to describe the recovery latency of a stream topology in processor-level failures under a task allocation plan. We introduce a recovery-latency aware task allocation problem (RTAP) that seeks task allocation plans for stream topologies that will achieve guaranteed recovery latencies. We discuss the difference between RTAP and classic task allocation problems and present a heuristic algorithm with a computational complexity of O(n log2n) to solve the problem. Extensive experiments were conducted to verify the correctness and effectiveness of our approach. It improves the resource usage by 15%–20% on average.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree false
54 schema:isPartOf N6fd7ac2ed2bd4b9ca9b311910c313245
55 N8c1955dddf46483bb3de7c717cf170cd
56 sg:journal.1320078
57 schema:name A Task Allocation Method for Stream Processing with Recovery Latency Constraint
58 schema:pagination 1125-1139
59 schema:productId N8e29c6d2531e4219a5ef1b6db95f72f6
60 N903562b01569485192ffc3f841ab8488
61 Ne940622ca347454b8eb0a109679e7567
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110033157
63 https://doi.org/10.1007/s11390-018-1876-6
64 schema:sdDatePublished 2019-04-11T08:09
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher Ne62c9766f5344ad1bb22b30ac316a462
67 schema:url https://link.springer.com/10.1007%2Fs11390-018-1876-6
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N2819b6da5bbd40a6a67331d7a4655697 rdf:first Nce3e7051af204b19901ccf8ee35d5d48
72 rdf:rest N440a050feb2b4d31b3afd9ca288e38da
73 N2cce9877e7734d66ab40f828228e949d schema:affiliation https://www.grid.ac/institutes/grid.264727.2
74 schema:familyName Wu
75 schema:givenName Jie
76 rdf:type schema:Person
77 N440a050feb2b4d31b3afd9ca288e38da rdf:first N2cce9877e7734d66ab40f828228e949d
78 rdf:rest Ne00d002dacb24ae3a546b8abe70a01ec
79 N68a33f34c02c4c7d9b687d157418088e schema:affiliation https://www.grid.ac/institutes/grid.64924.3d
80 schema:familyName Wei
81 schema:givenName Xiao-Hui
82 rdf:type schema:Person
83 N6fd7ac2ed2bd4b9ca9b311910c313245 schema:issueNumber 6
84 rdf:type schema:PublicationIssue
85 N8c1955dddf46483bb3de7c717cf170cd schema:volumeNumber 33
86 rdf:type schema:PublicationVolume
87 N8e29c6d2531e4219a5ef1b6db95f72f6 schema:name doi
88 schema:value 10.1007/s11390-018-1876-6
89 rdf:type schema:PropertyValue
90 N903562b01569485192ffc3f841ab8488 schema:name dimensions_id
91 schema:value pub.1110033157
92 rdf:type schema:PropertyValue
93 Na6bfb1ca327047448b313c784c5ba273 schema:affiliation https://www.grid.ac/institutes/grid.64924.3d
94 schema:familyName Li
95 schema:givenName Xiang
96 rdf:type schema:Person
97 Nb24526f5bcd24f0ca952933ffb2d5a07 rdf:first Na6bfb1ca327047448b313c784c5ba273
98 rdf:rest Nfcbeca83f84340899a6625effba1b2d7
99 Nce3e7051af204b19901ccf8ee35d5d48 schema:affiliation https://www.grid.ac/institutes/grid.264727.2
100 schema:familyName Li
101 schema:givenName Hong-Liang
102 rdf:type schema:Person
103 Ne00d002dacb24ae3a546b8abe70a01ec rdf:first sg:person.014746007677.81
104 rdf:rest Nb24526f5bcd24f0ca952933ffb2d5a07
105 Ne62c9766f5344ad1bb22b30ac316a462 schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 Ne940622ca347454b8eb0a109679e7567 schema:name readcube_id
108 schema:value 8491f4648ed917ba419c42f2e702d33f49abfdf1a1a409fe9b41f3f79932d070
109 rdf:type schema:PropertyValue
110 Nfcbeca83f84340899a6625effba1b2d7 rdf:first N68a33f34c02c4c7d9b687d157418088e
111 rdf:rest rdf:nil
112 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
113 schema:name Information and Computing Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
116 schema:name Computation Theory and Mathematics
117 rdf:type schema:DefinedTerm
118 sg:journal.1320078 schema:issn 1666-6038
119 1666-6046
120 schema:name Journal of Computer Science and Technology
121 rdf:type schema:Periodical
122 sg:person.014746007677.81 schema:affiliation https://www.grid.ac/institutes/grid.268132.c
123 schema:familyName Jiang
124 schema:givenName Zhen
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014746007677.81
126 rdf:type schema:Person
127 sg:pub.10.1007/978-1-4419-7997-1_35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047658800
128 https://doi.org/10.1007/978-1-4419-7997-1_35
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/s10586-017-0870-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1085075631
131 https://doi.org/10.1007/s10586-017-0870-z
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/s10586-017-1011-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090325524
134 https://doi.org/10.1007/s10586-017-1011-4
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.cosrev.2016.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013347914
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.jcss.2016.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043435972
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.jss.2016.08.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018598520
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/s0022-0000(74)80044-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000999206
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/s0377-2217(02)00123-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030478254
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/12.588063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061088605
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/cluster.2017.10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095218809
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/icccn.2018.8487327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107558425
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1109/icdcs.2015.48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093251716
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/icde.2005.72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095475136
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1109/icde.2016.7498267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094596428
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1109/icdmw.2010.172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094212263
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1109/icpads.2015.106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094120693
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1109/infocom.2016.7524433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095389335
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/pccc.2017.8280443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100848492
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/tbdata.2016.2638860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061523341
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1109/tkde.2007.1056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061661662
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1109/tr.2017.2712563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1087303136
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1137/0603007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062848732
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1145/1107499.1107504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029230064
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1145/1331904.1331907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039080811
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1145/1989323.1989350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000975391
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1145/1999995.2000008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037341469
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1145/2463676.2465272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001474693
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1145/2463676.2465282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047707600
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1145/2465351.2465353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015991543
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1145/2588555.2595641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011686270
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1145/2661829.2661882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011754334
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1145/2674026.2674028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003320822
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1145/2675743.2771831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053737749
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1145/2723372.2742788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013804236
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1145/2723372.2749437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032270790
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1145/2933267.2933312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017457549
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1145/361147.361115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041460956
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1145/800152.804907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024017488
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1145/872757.872789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001262233
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1145/872757.872854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036451105
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1145/872757.872857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019022800
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1287/ijoc.1120.0499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064706949
213 rdf:type schema:CreativeWork
214 https://doi.org/10.14778/2536222.2536229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067368174
215 rdf:type schema:CreativeWork
216 https://doi.org/10.3837/tiis.2017.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085521885
217 rdf:type schema:CreativeWork
218 https://www.grid.ac/institutes/grid.264727.2 schema:alternateName Temple University
219 schema:name College of Computer Science and Technology, Jilin University, 130012, Changchun, China
220 Department of Computer and Information Sciences, Temple University, 19122, Philadelphia, PA, U.S.A.
221 Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education, 130012, Changchun, China
222 rdf:type schema:Organization
223 https://www.grid.ac/institutes/grid.268132.c schema:alternateName West Chester University
224 schema:name Department of Computer Science, West Chester University of Pennsylvania, 19383, West Chester, PA, U.S.A.
225 rdf:type schema:Organization
226 https://www.grid.ac/institutes/grid.64924.3d schema:alternateName Jilin University
227 schema:name College of Computer Science and Technology, Jilin University, 130012, Changchun, China
228 Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education, 130012, Changchun, China
229 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...