Three-Layer Joint Modeling of Chinese Trigger Extraction with Constraints on Trigger and Argument Semantics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-09

AUTHORS

Pei-Feng Li, Guo-Dong Zhou

ABSTRACT

As a subtask of information extraction (IE), which aims to extract structured information from texts, event extraction is to recognize event trigger mentions of a predefined event type and their arguments. In general, event extraction can be divided into two subtasks: trigger extraction and argument extraction. Currently, the frequent existences of unannotated trigger mentions and poor-context trigger mentions impose critical challenges in Chinese trigger extraction. This paper proposes a novel three-layer joint model to integrate three components in trigger extraction, i.e., trigger identification, event type determination, and event subtype determination. In this way, different kinds of evidence on distinct pseudo samples can be well captured to eliminate the harmful effects of those un-annotated trigger mentions. In addition, this paper introduces various types of linguistically driven constraints on the trigger and argument semantics into the joint model to recover those poor-context trigger mentions. The experimental results show that our joint model significantly outperforms the state-of-the-art Chinese trigger extraction and Chinese event extraction as a whole. More... »

PAGES

1044-1056

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11390-017-1780-5

DOI

http://dx.doi.org/10.1007/s11390-017-1780-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091880719


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Soochow University", 
          "id": "https://www.grid.ac/institutes/grid.263761.7", 
          "name": [
            "School of Computer Science and Technology, Soochow University, 215006, Suzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Pei-Feng", 
        "id": "sg:person.011614750605.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011614750605.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Soochow University", 
          "id": "https://www.grid.ac/institutes/grid.263761.7", 
          "name": [
            "School of Computer Science and Technology, Soochow University, 215006, Suzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Guo-Dong", 
        "id": "sg:person.013156053127.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013156053127.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1162/coli.2008.34.2.225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001977642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1007-0214(10)70058-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006570386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ipm.2013.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015047638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18653/v1/d15-1247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099106225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/v1/p15-2060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099110189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/v1/p15-2060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099110189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18653/v1/w15-4502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099114520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/v1/p15-1017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099115024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/v1/p15-1017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099115024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1572340.1572347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099140184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1699510.1699530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099201983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1620853.1620910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099256254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1621829.1621838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099256553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1629235.1629236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099275142"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-09", 
    "datePublishedReg": "2017-09-01", 
    "description": "As a subtask of information extraction (IE), which aims to extract structured information from texts, event extraction is to recognize event trigger mentions of a predefined event type and their arguments. In general, event extraction can be divided into two subtasks: trigger extraction and argument extraction. Currently, the frequent existences of unannotated trigger mentions and poor-context trigger mentions impose critical challenges in Chinese trigger extraction. This paper proposes a novel three-layer joint model to integrate three components in trigger extraction, i.e., trigger identification, event type determination, and event subtype determination. In this way, different kinds of evidence on distinct pseudo samples can be well captured to eliminate the harmful effects of those un-annotated trigger mentions. In addition, this paper introduces various types of linguistically driven constraints on the trigger and argument semantics into the joint model to recover those poor-context trigger mentions. The experimental results show that our joint model significantly outperforms the state-of-the-art Chinese trigger extraction and Chinese event extraction as a whole.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11390-017-1780-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1320078", 
        "issn": [
          "1666-6046", 
          "1666-6038"
        ], 
        "name": "Journal of Computer Science and Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "32"
      }
    ], 
    "name": "Three-Layer Joint Modeling of Chinese Trigger Extraction with Constraints on Trigger and Argument Semantics", 
    "pagination": "1044-1056", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "79f822a2e5c99d59cc63ff39e869263e2ff16731898450804c13716c2efc8cc1"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11390-017-1780-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091880719"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11390-017-1780-5", 
      "https://app.dimensions.ai/details/publication/pub.1091880719"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000535.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11390-017-1780-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11390-017-1780-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11390-017-1780-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11390-017-1780-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11390-017-1780-5'


 

This table displays all metadata directly associated to this object as RDF triples.

104 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11390-017-1780-5 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nc9af1c141d5f4f1aaae03075eed740d1
4 schema:citation https://doi.org/10.1016/j.ipm.2013.10.003
5 https://doi.org/10.1016/s1007-0214(10)70058-4
6 https://doi.org/10.1162/coli.2008.34.2.225
7 https://doi.org/10.18653/v1/d15-1247
8 https://doi.org/10.18653/v1/w15-4502
9 https://doi.org/10.3115/1572340.1572347
10 https://doi.org/10.3115/1620853.1620910
11 https://doi.org/10.3115/1621829.1621838
12 https://doi.org/10.3115/1629235.1629236
13 https://doi.org/10.3115/1699510.1699530
14 https://doi.org/10.3115/v1/p15-1017
15 https://doi.org/10.3115/v1/p15-2060
16 schema:datePublished 2017-09
17 schema:datePublishedReg 2017-09-01
18 schema:description As a subtask of information extraction (IE), which aims to extract structured information from texts, event extraction is to recognize event trigger mentions of a predefined event type and their arguments. In general, event extraction can be divided into two subtasks: trigger extraction and argument extraction. Currently, the frequent existences of unannotated trigger mentions and poor-context trigger mentions impose critical challenges in Chinese trigger extraction. This paper proposes a novel three-layer joint model to integrate three components in trigger extraction, i.e., trigger identification, event type determination, and event subtype determination. In this way, different kinds of evidence on distinct pseudo samples can be well captured to eliminate the harmful effects of those un-annotated trigger mentions. In addition, this paper introduces various types of linguistically driven constraints on the trigger and argument semantics into the joint model to recover those poor-context trigger mentions. The experimental results show that our joint model significantly outperforms the state-of-the-art Chinese trigger extraction and Chinese event extraction as a whole.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N8de19c33545d4b828414478ddc9b1d87
23 Ne5922057cead4bab9055d6fdb61b8356
24 sg:journal.1320078
25 schema:name Three-Layer Joint Modeling of Chinese Trigger Extraction with Constraints on Trigger and Argument Semantics
26 schema:pagination 1044-1056
27 schema:productId N0a73c99b268249099b98188b5d72b3fa
28 Na6aee2b0476947d5b2499b012eecf449
29 Ne89d46221fb5492d9cdb36667cb4aed7
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091880719
31 https://doi.org/10.1007/s11390-017-1780-5
32 schema:sdDatePublished 2019-04-10T22:37
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N285e9b5d04324c149d1a5403208563a9
35 schema:url http://link.springer.com/10.1007%2Fs11390-017-1780-5
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N0554ad161b894344ad06a0170ea9050f rdf:first sg:person.013156053127.55
40 rdf:rest rdf:nil
41 N0a73c99b268249099b98188b5d72b3fa schema:name doi
42 schema:value 10.1007/s11390-017-1780-5
43 rdf:type schema:PropertyValue
44 N285e9b5d04324c149d1a5403208563a9 schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 N8de19c33545d4b828414478ddc9b1d87 schema:volumeNumber 32
47 rdf:type schema:PublicationVolume
48 Na6aee2b0476947d5b2499b012eecf449 schema:name dimensions_id
49 schema:value pub.1091880719
50 rdf:type schema:PropertyValue
51 Nc9af1c141d5f4f1aaae03075eed740d1 rdf:first sg:person.011614750605.88
52 rdf:rest N0554ad161b894344ad06a0170ea9050f
53 Ne5922057cead4bab9055d6fdb61b8356 schema:issueNumber 5
54 rdf:type schema:PublicationIssue
55 Ne89d46221fb5492d9cdb36667cb4aed7 schema:name readcube_id
56 schema:value 79f822a2e5c99d59cc63ff39e869263e2ff16731898450804c13716c2efc8cc1
57 rdf:type schema:PropertyValue
58 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
59 schema:name Information and Computing Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
62 schema:name Artificial Intelligence and Image Processing
63 rdf:type schema:DefinedTerm
64 sg:journal.1320078 schema:issn 1666-6038
65 1666-6046
66 schema:name Journal of Computer Science and Technology
67 rdf:type schema:Periodical
68 sg:person.011614750605.88 schema:affiliation https://www.grid.ac/institutes/grid.263761.7
69 schema:familyName Li
70 schema:givenName Pei-Feng
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011614750605.88
72 rdf:type schema:Person
73 sg:person.013156053127.55 schema:affiliation https://www.grid.ac/institutes/grid.263761.7
74 schema:familyName Zhou
75 schema:givenName Guo-Dong
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013156053127.55
77 rdf:type schema:Person
78 https://doi.org/10.1016/j.ipm.2013.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015047638
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1016/s1007-0214(10)70058-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006570386
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1162/coli.2008.34.2.225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001977642
83 rdf:type schema:CreativeWork
84 https://doi.org/10.18653/v1/d15-1247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099106225
85 rdf:type schema:CreativeWork
86 https://doi.org/10.18653/v1/w15-4502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099114520
87 rdf:type schema:CreativeWork
88 https://doi.org/10.3115/1572340.1572347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099140184
89 rdf:type schema:CreativeWork
90 https://doi.org/10.3115/1620853.1620910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099256254
91 rdf:type schema:CreativeWork
92 https://doi.org/10.3115/1621829.1621838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099256553
93 rdf:type schema:CreativeWork
94 https://doi.org/10.3115/1629235.1629236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099275142
95 rdf:type schema:CreativeWork
96 https://doi.org/10.3115/1699510.1699530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099201983
97 rdf:type schema:CreativeWork
98 https://doi.org/10.3115/v1/p15-1017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099115024
99 rdf:type schema:CreativeWork
100 https://doi.org/10.3115/v1/p15-2060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099110189
101 rdf:type schema:CreativeWork
102 https://www.grid.ac/institutes/grid.263761.7 schema:alternateName Soochow University
103 schema:name School of Computer Science and Technology, Soochow University, 215006, Suzhou, China
104 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...