Securing Recommender Systems Against Shilling Attacks Using Social-Based Clustering View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-07

AUTHORS

Xiang-Liang Zhang, Tak Man Desmond Lee, Georgios Pitsilis

ABSTRACT

Recommender systems (RS) have been found supportive and practical in e-commerce and been established as useful aiding services. Despite their great adoption in the user communities, RS are still vulnerable to unscrupulous producers who try to promote their products by shilling the systems. With the advent of social networks new sources of information have been made available which can potentially render RS more resistant to attacks. In this paper we explore the information provided in the form of social links with clustering for diminishing the impact of attacks. We propose two algorithms, CluTr and WCluTr, to combine clustering with \trust" among users. We demonstrate that CluTr and WCluTr enhance the robustness of RS by experimentally evaluating them on data from a public consumer recommender system Epinions.com. More... »

PAGES

616-624

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11390-013-1362-0

DOI

http://dx.doi.org/10.1007/s11390-013-1362-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032546386


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "King Abdullah University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.45672.32", 
          "name": [
            "King Abdullah University of Science and Technology, 23955-6900, Thuwal, Saudi Arabia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Xiang-Liang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King Abdullah University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.45672.32", 
          "name": [
            "King Abdullah University of Science and Technology, 23955-6900, Thuwal, Saudi Arabia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Tak Man Desmond", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Luxembourg", 
          "id": "https://www.grid.ac/institutes/grid.16008.3f", 
          "name": [
            "Faculty of Science, Technology and Communication, University of Luxembourg, Luxembourg, Luxembourg"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pitsilis", 
        "givenName": "Georgios", 
        "id": "sg:person.014467207575.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014467207575.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/1639714.1639746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000313999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1639714.1639739", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004028417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1557019.1557067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007480630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-24747-0_19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015513326", 
          "https://doi.org/10.1007/978-3-540-24747-0_19"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-24747-0_19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015513326", 
          "https://doi.org/10.1007/978-3-540-24747-0_19"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-22200-9_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018604384", 
          "https://doi.org/10.1007/978-3-642-22200-9_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-22200-9_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018604384", 
          "https://doi.org/10.1007/978-3-642-22200-9_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/988672.988726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022698821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1297231.1297235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024064120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1150402.1150508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036492497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1062745.1062818", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045474014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1571941.1571978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049532735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-17080-5_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049659766", 
          "https://doi.org/10.1007/978-3-642-17080-5_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-17080-5_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049659766", 
          "https://doi.org/10.1007/978-3-642-17080-5_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1278366.1278372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050378916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ietisy/e90-d.9.1363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059672314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2685263", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070058495"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-07", 
    "datePublishedReg": "2013-07-01", 
    "description": "Recommender systems (RS) have been found supportive and practical in e-commerce and been established as useful aiding services. Despite their great adoption in the user communities, RS are still vulnerable to unscrupulous producers who try to promote their products by shilling the systems. With the advent of social networks new sources of information have been made available which can potentially render RS more resistant to attacks. In this paper we explore the information provided in the form of social links with clustering for diminishing the impact of attacks. We propose two algorithms, CluTr and WCluTr, to combine clustering with \\trust\" among users. We demonstrate that CluTr and WCluTr enhance the robustness of RS by experimentally evaluating them on data from a public consumer recommender system Epinions.com.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11390-013-1362-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1320078", 
        "issn": [
          "1666-6046", 
          "1666-6038"
        ], 
        "name": "Journal of Computer Science and Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "name": "Securing Recommender Systems Against Shilling Attacks Using Social-Based Clustering", 
    "pagination": "616-624", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9b0c21494671f269e57e42d29d95783e583e037539937d761a13724e4ccb29f9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11390-013-1362-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032546386"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11390-013-1362-0", 
      "https://app.dimensions.ai/details/publication/pub.1032546386"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000522.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11390-013-1362-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11390-013-1362-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11390-013-1362-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11390-013-1362-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11390-013-1362-0'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11390-013-1362-0 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N81fc39bf757946a1bfc731452e720343
4 schema:citation sg:pub.10.1007/978-3-540-24747-0_19
5 sg:pub.10.1007/978-3-642-17080-5_3
6 sg:pub.10.1007/978-3-642-22200-9_9
7 https://doi.org/10.1093/ietisy/e90-d.9.1363
8 https://doi.org/10.1145/1062745.1062818
9 https://doi.org/10.1145/1150402.1150508
10 https://doi.org/10.1145/1278366.1278372
11 https://doi.org/10.1145/1297231.1297235
12 https://doi.org/10.1145/1557019.1557067
13 https://doi.org/10.1145/1571941.1571978
14 https://doi.org/10.1145/1639714.1639739
15 https://doi.org/10.1145/1639714.1639746
16 https://doi.org/10.1145/988672.988726
17 https://doi.org/10.2307/2685263
18 schema:datePublished 2013-07
19 schema:datePublishedReg 2013-07-01
20 schema:description Recommender systems (RS) have been found supportive and practical in e-commerce and been established as useful aiding services. Despite their great adoption in the user communities, RS are still vulnerable to unscrupulous producers who try to promote their products by shilling the systems. With the advent of social networks new sources of information have been made available which can potentially render RS more resistant to attacks. In this paper we explore the information provided in the form of social links with clustering for diminishing the impact of attacks. We propose two algorithms, CluTr and WCluTr, to combine clustering with \trust" among users. We demonstrate that CluTr and WCluTr enhance the robustness of RS by experimentally evaluating them on data from a public consumer recommender system Epinions.com.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N41a517f53412433e8a37384ed2c50f6d
25 N71dd5a55d1fa44f19564789a45ef9167
26 sg:journal.1320078
27 schema:name Securing Recommender Systems Against Shilling Attacks Using Social-Based Clustering
28 schema:pagination 616-624
29 schema:productId N65eaa5527ad8419b8ac0c83d62883fa6
30 Na5a40e85c602447e8022c57a7896cb15
31 Nf12d0f85955444d3b108aa2cc5b54098
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032546386
33 https://doi.org/10.1007/s11390-013-1362-0
34 schema:sdDatePublished 2019-04-10T14:12
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N6bc681e0e15d4b328efe06a6f9771a02
37 schema:url http://link.springer.com/10.1007%2Fs11390-013-1362-0
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N045e47b981c54db1a118f0272d2b94e3 rdf:first sg:person.014467207575.44
42 rdf:rest rdf:nil
43 N053ecabd8e544403994d4e3f175751fa schema:affiliation https://www.grid.ac/institutes/grid.45672.32
44 schema:familyName Zhang
45 schema:givenName Xiang-Liang
46 rdf:type schema:Person
47 N41a517f53412433e8a37384ed2c50f6d schema:issueNumber 4
48 rdf:type schema:PublicationIssue
49 N65eaa5527ad8419b8ac0c83d62883fa6 schema:name readcube_id
50 schema:value 9b0c21494671f269e57e42d29d95783e583e037539937d761a13724e4ccb29f9
51 rdf:type schema:PropertyValue
52 N6bc681e0e15d4b328efe06a6f9771a02 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N71dd5a55d1fa44f19564789a45ef9167 schema:volumeNumber 28
55 rdf:type schema:PublicationVolume
56 N80ad149154d34fb0a60f8db44a712f88 schema:affiliation https://www.grid.ac/institutes/grid.45672.32
57 schema:familyName Lee
58 schema:givenName Tak Man Desmond
59 rdf:type schema:Person
60 N81fc39bf757946a1bfc731452e720343 rdf:first N053ecabd8e544403994d4e3f175751fa
61 rdf:rest Nf5419ee20c814945986b555f6765599c
62 Na5a40e85c602447e8022c57a7896cb15 schema:name doi
63 schema:value 10.1007/s11390-013-1362-0
64 rdf:type schema:PropertyValue
65 Nf12d0f85955444d3b108aa2cc5b54098 schema:name dimensions_id
66 schema:value pub.1032546386
67 rdf:type schema:PropertyValue
68 Nf5419ee20c814945986b555f6765599c rdf:first N80ad149154d34fb0a60f8db44a712f88
69 rdf:rest N045e47b981c54db1a118f0272d2b94e3
70 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
71 schema:name Information and Computing Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
74 schema:name Information Systems
75 rdf:type schema:DefinedTerm
76 sg:journal.1320078 schema:issn 1666-6038
77 1666-6046
78 schema:name Journal of Computer Science and Technology
79 rdf:type schema:Periodical
80 sg:person.014467207575.44 schema:affiliation https://www.grid.ac/institutes/grid.16008.3f
81 schema:familyName Pitsilis
82 schema:givenName Georgios
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014467207575.44
84 rdf:type schema:Person
85 sg:pub.10.1007/978-3-540-24747-0_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015513326
86 https://doi.org/10.1007/978-3-540-24747-0_19
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/978-3-642-17080-5_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049659766
89 https://doi.org/10.1007/978-3-642-17080-5_3
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/978-3-642-22200-9_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018604384
92 https://doi.org/10.1007/978-3-642-22200-9_9
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1093/ietisy/e90-d.9.1363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059672314
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1145/1062745.1062818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045474014
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1145/1150402.1150508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036492497
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1145/1278366.1278372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050378916
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1145/1297231.1297235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024064120
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1145/1557019.1557067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007480630
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1145/1571941.1571978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049532735
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1145/1639714.1639739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004028417
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1145/1639714.1639746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000313999
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1145/988672.988726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022698821
113 rdf:type schema:CreativeWork
114 https://doi.org/10.2307/2685263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070058495
115 rdf:type schema:CreativeWork
116 https://www.grid.ac/institutes/grid.16008.3f schema:alternateName University of Luxembourg
117 schema:name Faculty of Science, Technology and Communication, University of Luxembourg, Luxembourg, Luxembourg
118 rdf:type schema:Organization
119 https://www.grid.ac/institutes/grid.45672.32 schema:alternateName King Abdullah University of Science and Technology
120 schema:name King Abdullah University of Science and Technology, 23955-6900, Thuwal, Saudi Arabia
121 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...