2D Correlative-Chain Conditional Random Fields for Semantic Annotation of Web Objects View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-07

AUTHORS

Yan-Hui Ding, Qing-Zhong Li, Yong-Quan Dong, Zhao-Hui Peng

ABSTRACT

Semantic annotation of Web objects is a key problem for Web information extraction. The Web contains an abundance of useful semi-structured information about real world objects, and the empirical study shows that strong two-dimensional sequence characteristics and correlative characteristics exist for Web information about objects of the same type across different Web sites. Conditional Random Fields (CRFs) are the state-of-the-art approaches taking the sequence characteristics to do better labeling. However, as the appearance of correlative characteristics between Web object elements, previous CRFs have their limitations for semantic annotation of Web objects and cannot deal with the long distance dependencies between Web object elements efficiently. To better incorporate the long distance dependencies, on one hand, this paper describes long distance dependencies by correlative edges, which are built by making good use of structured information and the characteristics of records from external databases; and on the other hand, this paper presents a two-dimensional Correlative-Chain Conditional Random Fields (2DCC-CRFs) to do semantic annotation of Web objects. This approach extends a classic model, two-dimensional Conditional Random Fields (2DCRFs), by adding correlative edges. Experimental results using a large number of real-world data collected from diverse domains show that the proposed approach can significantly improve the semantic annotation accuracy of Web objects. More... »

PAGES

761-770

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11390-010-9363-8

DOI

http://dx.doi.org/10.1007/s11390-010-9363-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021321604


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shandong University", 
          "id": "https://www.grid.ac/institutes/grid.27255.37", 
          "name": [
            "School of Computer Science and Technology, Shandong University, 250014, Jinan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ding", 
        "givenName": "Yan-Hui", 
        "id": "sg:person.014203366775.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014203366775.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shandong University", 
          "id": "https://www.grid.ac/institutes/grid.27255.37", 
          "name": [
            "School of Computer Science and Technology, Shandong University, 250014, Jinan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Qing-Zhong", 
        "id": "sg:person.016373710375.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016373710375.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shandong University", 
          "id": "https://www.grid.ac/institutes/grid.27255.37", 
          "name": [
            "School of Computer Science and Technology, Shandong University, 250014, Jinan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dong", 
        "givenName": "Yong-Quan", 
        "id": "sg:person.013071040347.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013071040347.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shandong University", 
          "id": "https://www.grid.ac/institutes/grid.27255.37", 
          "name": [
            "School of Computer Science and Technology, Shandong University, 250014, Jinan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peng", 
        "givenName": "Zhao-Hui", 
        "id": "sg:person.015304522747.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015304522747.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11390-008-9157-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000090138", 
          "https://doi.org/10.1007/s11390-008-9157-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1150402.1150457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005761639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/089976600300015880", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014388660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-023x(99)00027-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015409047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1060745.1060761", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017514996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01589116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022481421", 
          "https://doi.org/10.1007/bf01589116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11965893_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037056041", 
          "https://doi.org/10.1007/11965893_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11965893_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037056041", 
          "https://doi.org/10.1007/11965893_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1014052.1014065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041839161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1102351.1102483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047866690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.910585", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061101592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3724/sp.j.1001.2008.02149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071314302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icde.2006.69", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093609998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icde.2005.28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094590689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icde.2006.83", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095718574"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-07", 
    "datePublishedReg": "2010-07-01", 
    "description": "Semantic annotation of Web objects is a key problem for Web information extraction. The Web contains an abundance of useful semi-structured information about real world objects, and the empirical study shows that strong two-dimensional sequence characteristics and correlative characteristics exist for Web information about objects of the same type across different Web sites. Conditional Random Fields (CRFs) are the state-of-the-art approaches taking the sequence characteristics to do better labeling. However, as the appearance of correlative characteristics between Web object elements, previous CRFs have their limitations for semantic annotation of Web objects and cannot deal with the long distance dependencies between Web object elements efficiently. To better incorporate the long distance dependencies, on one hand, this paper describes long distance dependencies by correlative edges, which are built by making good use of structured information and the characteristics of records from external databases; and on the other hand, this paper presents a two-dimensional Correlative-Chain Conditional Random Fields (2DCC-CRFs) to do semantic annotation of Web objects. This approach extends a classic model, two-dimensional Conditional Random Fields (2DCRFs), by adding correlative edges. Experimental results using a large number of real-world data collected from diverse domains show that the proposed approach can significantly improve the semantic annotation accuracy of Web objects.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11390-010-9363-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1320078", 
        "issn": [
          "1666-6046", 
          "1666-6038"
        ], 
        "name": "Journal of Computer Science and Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "25"
      }
    ], 
    "name": "2D Correlative-Chain Conditional Random Fields for Semantic Annotation of Web Objects", 
    "pagination": "761-770", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "65962772e8f599d19f022e5432b1c19675c4c4b11c2170239adcbc142f1a26df"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11390-010-9363-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021321604"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11390-010-9363-8", 
      "https://app.dimensions.ai/details/publication/pub.1021321604"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113676_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11390-010-9363-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11390-010-9363-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11390-010-9363-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11390-010-9363-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11390-010-9363-8'


 

This table displays all metadata directly associated to this object as RDF triples.

127 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11390-010-9363-8 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Nf16e3ab1faf640cb9e62af9ae3fc49f7
4 schema:citation sg:pub.10.1007/11965893_3
5 sg:pub.10.1007/bf01589116
6 sg:pub.10.1007/s11390-008-9157-4
7 https://doi.org/10.1016/s0169-023x(99)00027-0
8 https://doi.org/10.1109/18.910585
9 https://doi.org/10.1109/icde.2005.28
10 https://doi.org/10.1109/icde.2006.69
11 https://doi.org/10.1109/icde.2006.83
12 https://doi.org/10.1145/1014052.1014065
13 https://doi.org/10.1145/1060745.1060761
14 https://doi.org/10.1145/1102351.1102483
15 https://doi.org/10.1145/1150402.1150457
16 https://doi.org/10.1162/089976600300015880
17 https://doi.org/10.3724/sp.j.1001.2008.02149
18 schema:datePublished 2010-07
19 schema:datePublishedReg 2010-07-01
20 schema:description Semantic annotation of Web objects is a key problem for Web information extraction. The Web contains an abundance of useful semi-structured information about real world objects, and the empirical study shows that strong two-dimensional sequence characteristics and correlative characteristics exist for Web information about objects of the same type across different Web sites. Conditional Random Fields (CRFs) are the state-of-the-art approaches taking the sequence characteristics to do better labeling. However, as the appearance of correlative characteristics between Web object elements, previous CRFs have their limitations for semantic annotation of Web objects and cannot deal with the long distance dependencies between Web object elements efficiently. To better incorporate the long distance dependencies, on one hand, this paper describes long distance dependencies by correlative edges, which are built by making good use of structured information and the characteristics of records from external databases; and on the other hand, this paper presents a two-dimensional Correlative-Chain Conditional Random Fields (2DCC-CRFs) to do semantic annotation of Web objects. This approach extends a classic model, two-dimensional Conditional Random Fields (2DCRFs), by adding correlative edges. Experimental results using a large number of real-world data collected from diverse domains show that the proposed approach can significantly improve the semantic annotation accuracy of Web objects.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N022d8ddff3bb49a39cac3127c6e9a89c
25 Nec2b6a80b6e441b18a1835b251203217
26 sg:journal.1320078
27 schema:name 2D Correlative-Chain Conditional Random Fields for Semantic Annotation of Web Objects
28 schema:pagination 761-770
29 schema:productId N47ba8eb95c07434ba90b865df680000d
30 N56578c8defb648e28d04829d4c765383
31 Na7ee7f5061a3404c82da92b6ad991912
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021321604
33 https://doi.org/10.1007/s11390-010-9363-8
34 schema:sdDatePublished 2019-04-11T10:37
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N0bc07f56a78043f2a377a41460e50b03
37 schema:url http://link.springer.com/10.1007%2Fs11390-010-9363-8
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N022d8ddff3bb49a39cac3127c6e9a89c schema:issueNumber 4
42 rdf:type schema:PublicationIssue
43 N0bc07f56a78043f2a377a41460e50b03 schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 N47ba8eb95c07434ba90b865df680000d schema:name doi
46 schema:value 10.1007/s11390-010-9363-8
47 rdf:type schema:PropertyValue
48 N56578c8defb648e28d04829d4c765383 schema:name readcube_id
49 schema:value 65962772e8f599d19f022e5432b1c19675c4c4b11c2170239adcbc142f1a26df
50 rdf:type schema:PropertyValue
51 Na658c855d03c4b72874893d2693ab9fc rdf:first sg:person.015304522747.36
52 rdf:rest rdf:nil
53 Na7ee7f5061a3404c82da92b6ad991912 schema:name dimensions_id
54 schema:value pub.1021321604
55 rdf:type schema:PropertyValue
56 Nec2b6a80b6e441b18a1835b251203217 schema:volumeNumber 25
57 rdf:type schema:PublicationVolume
58 Ned76a2cd14884997896a4f6fc605c94d rdf:first sg:person.016373710375.21
59 rdf:rest Nfa1affa055ee4207bbf5c8defb85b94c
60 Nf16e3ab1faf640cb9e62af9ae3fc49f7 rdf:first sg:person.014203366775.13
61 rdf:rest Ned76a2cd14884997896a4f6fc605c94d
62 Nfa1affa055ee4207bbf5c8defb85b94c rdf:first sg:person.013071040347.40
63 rdf:rest Na658c855d03c4b72874893d2693ab9fc
64 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
65 schema:name Information and Computing Sciences
66 rdf:type schema:DefinedTerm
67 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
68 schema:name Information Systems
69 rdf:type schema:DefinedTerm
70 sg:journal.1320078 schema:issn 1666-6038
71 1666-6046
72 schema:name Journal of Computer Science and Technology
73 rdf:type schema:Periodical
74 sg:person.013071040347.40 schema:affiliation https://www.grid.ac/institutes/grid.27255.37
75 schema:familyName Dong
76 schema:givenName Yong-Quan
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013071040347.40
78 rdf:type schema:Person
79 sg:person.014203366775.13 schema:affiliation https://www.grid.ac/institutes/grid.27255.37
80 schema:familyName Ding
81 schema:givenName Yan-Hui
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014203366775.13
83 rdf:type schema:Person
84 sg:person.015304522747.36 schema:affiliation https://www.grid.ac/institutes/grid.27255.37
85 schema:familyName Peng
86 schema:givenName Zhao-Hui
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015304522747.36
88 rdf:type schema:Person
89 sg:person.016373710375.21 schema:affiliation https://www.grid.ac/institutes/grid.27255.37
90 schema:familyName Li
91 schema:givenName Qing-Zhong
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016373710375.21
93 rdf:type schema:Person
94 sg:pub.10.1007/11965893_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037056041
95 https://doi.org/10.1007/11965893_3
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/bf01589116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022481421
98 https://doi.org/10.1007/bf01589116
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/s11390-008-9157-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000090138
101 https://doi.org/10.1007/s11390-008-9157-4
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/s0169-023x(99)00027-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015409047
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1109/18.910585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061101592
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1109/icde.2005.28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094590689
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1109/icde.2006.69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093609998
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1109/icde.2006.83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095718574
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1145/1014052.1014065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041839161
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1145/1060745.1060761 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017514996
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1145/1102351.1102483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047866690
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1145/1150402.1150457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005761639
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1162/089976600300015880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014388660
122 rdf:type schema:CreativeWork
123 https://doi.org/10.3724/sp.j.1001.2008.02149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071314302
124 rdf:type schema:CreativeWork
125 https://www.grid.ac/institutes/grid.27255.37 schema:alternateName Shandong University
126 schema:name School of Computer Science and Technology, Shandong University, 250014, Jinan, China
127 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...