2D Correlative-Chain Conditional Random Fields for Semantic Annotation of Web Objects View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-07

AUTHORS

Yan-Hui Ding, Qing-Zhong Li, Yong-Quan Dong, Zhao-Hui Peng

ABSTRACT

Semantic annotation of Web objects is a key problem for Web information extraction. The Web contains an abundance of useful semi-structured information about real world objects, and the empirical study shows that strong two-dimensional sequence characteristics and correlative characteristics exist for Web information about objects of the same type across different Web sites. Conditional Random Fields (CRFs) are the state-of-the-art approaches taking the sequence characteristics to do better labeling. However, as the appearance of correlative characteristics between Web object elements, previous CRFs have their limitations for semantic annotation of Web objects and cannot deal with the long distance dependencies between Web object elements efficiently. To better incorporate the long distance dependencies, on one hand, this paper describes long distance dependencies by correlative edges, which are built by making good use of structured information and the characteristics of records from external databases; and on the other hand, this paper presents a two-dimensional Correlative-Chain Conditional Random Fields (2DCC-CRFs) to do semantic annotation of Web objects. This approach extends a classic model, two-dimensional Conditional Random Fields (2DCRFs), by adding correlative edges. Experimental results using a large number of real-world data collected from diverse domains show that the proposed approach can significantly improve the semantic annotation accuracy of Web objects. More... »

PAGES

761-770

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11390-010-9363-8

DOI

http://dx.doi.org/10.1007/s11390-010-9363-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021321604


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shandong University", 
          "id": "https://www.grid.ac/institutes/grid.27255.37", 
          "name": [
            "School of Computer Science and Technology, Shandong University, 250014, Jinan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ding", 
        "givenName": "Yan-Hui", 
        "id": "sg:person.014203366775.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014203366775.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shandong University", 
          "id": "https://www.grid.ac/institutes/grid.27255.37", 
          "name": [
            "School of Computer Science and Technology, Shandong University, 250014, Jinan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Qing-Zhong", 
        "id": "sg:person.016373710375.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016373710375.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shandong University", 
          "id": "https://www.grid.ac/institutes/grid.27255.37", 
          "name": [
            "School of Computer Science and Technology, Shandong University, 250014, Jinan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dong", 
        "givenName": "Yong-Quan", 
        "id": "sg:person.013071040347.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013071040347.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shandong University", 
          "id": "https://www.grid.ac/institutes/grid.27255.37", 
          "name": [
            "School of Computer Science and Technology, Shandong University, 250014, Jinan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peng", 
        "givenName": "Zhao-Hui", 
        "id": "sg:person.015304522747.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015304522747.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11390-008-9157-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000090138", 
          "https://doi.org/10.1007/s11390-008-9157-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1150402.1150457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005761639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/089976600300015880", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014388660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-023x(99)00027-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015409047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1060745.1060761", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017514996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01589116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022481421", 
          "https://doi.org/10.1007/bf01589116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11965893_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037056041", 
          "https://doi.org/10.1007/11965893_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11965893_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037056041", 
          "https://doi.org/10.1007/11965893_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1014052.1014065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041839161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1102351.1102483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047866690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.910585", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061101592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3724/sp.j.1001.2008.02149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071314302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icde.2006.69", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093609998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icde.2005.28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094590689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icde.2006.83", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095718574"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-07", 
    "datePublishedReg": "2010-07-01", 
    "description": "Semantic annotation of Web objects is a key problem for Web information extraction. The Web contains an abundance of useful semi-structured information about real world objects, and the empirical study shows that strong two-dimensional sequence characteristics and correlative characteristics exist for Web information about objects of the same type across different Web sites. Conditional Random Fields (CRFs) are the state-of-the-art approaches taking the sequence characteristics to do better labeling. However, as the appearance of correlative characteristics between Web object elements, previous CRFs have their limitations for semantic annotation of Web objects and cannot deal with the long distance dependencies between Web object elements efficiently. To better incorporate the long distance dependencies, on one hand, this paper describes long distance dependencies by correlative edges, which are built by making good use of structured information and the characteristics of records from external databases; and on the other hand, this paper presents a two-dimensional Correlative-Chain Conditional Random Fields (2DCC-CRFs) to do semantic annotation of Web objects. This approach extends a classic model, two-dimensional Conditional Random Fields (2DCRFs), by adding correlative edges. Experimental results using a large number of real-world data collected from diverse domains show that the proposed approach can significantly improve the semantic annotation accuracy of Web objects.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11390-010-9363-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1320078", 
        "issn": [
          "1666-6046", 
          "1666-6038"
        ], 
        "name": "Journal of Computer Science and Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "25"
      }
    ], 
    "name": "2D Correlative-Chain Conditional Random Fields for Semantic Annotation of Web Objects", 
    "pagination": "761-770", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "65962772e8f599d19f022e5432b1c19675c4c4b11c2170239adcbc142f1a26df"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11390-010-9363-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021321604"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11390-010-9363-8", 
      "https://app.dimensions.ai/details/publication/pub.1021321604"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113676_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11390-010-9363-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11390-010-9363-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11390-010-9363-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11390-010-9363-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11390-010-9363-8'


 

This table displays all metadata directly associated to this object as RDF triples.

127 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11390-010-9363-8 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N10e799ea738f4c519079372ed145b3e5
4 schema:citation sg:pub.10.1007/11965893_3
5 sg:pub.10.1007/bf01589116
6 sg:pub.10.1007/s11390-008-9157-4
7 https://doi.org/10.1016/s0169-023x(99)00027-0
8 https://doi.org/10.1109/18.910585
9 https://doi.org/10.1109/icde.2005.28
10 https://doi.org/10.1109/icde.2006.69
11 https://doi.org/10.1109/icde.2006.83
12 https://doi.org/10.1145/1014052.1014065
13 https://doi.org/10.1145/1060745.1060761
14 https://doi.org/10.1145/1102351.1102483
15 https://doi.org/10.1145/1150402.1150457
16 https://doi.org/10.1162/089976600300015880
17 https://doi.org/10.3724/sp.j.1001.2008.02149
18 schema:datePublished 2010-07
19 schema:datePublishedReg 2010-07-01
20 schema:description Semantic annotation of Web objects is a key problem for Web information extraction. The Web contains an abundance of useful semi-structured information about real world objects, and the empirical study shows that strong two-dimensional sequence characteristics and correlative characteristics exist for Web information about objects of the same type across different Web sites. Conditional Random Fields (CRFs) are the state-of-the-art approaches taking the sequence characteristics to do better labeling. However, as the appearance of correlative characteristics between Web object elements, previous CRFs have their limitations for semantic annotation of Web objects and cannot deal with the long distance dependencies between Web object elements efficiently. To better incorporate the long distance dependencies, on one hand, this paper describes long distance dependencies by correlative edges, which are built by making good use of structured information and the characteristics of records from external databases; and on the other hand, this paper presents a two-dimensional Correlative-Chain Conditional Random Fields (2DCC-CRFs) to do semantic annotation of Web objects. This approach extends a classic model, two-dimensional Conditional Random Fields (2DCRFs), by adding correlative edges. Experimental results using a large number of real-world data collected from diverse domains show that the proposed approach can significantly improve the semantic annotation accuracy of Web objects.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N2aed9bc5948e4c42aea14401bf790abe
25 Na57bbfa770de4e9dbf418cc82f546616
26 sg:journal.1320078
27 schema:name 2D Correlative-Chain Conditional Random Fields for Semantic Annotation of Web Objects
28 schema:pagination 761-770
29 schema:productId N11b907928b3b4ac88e6b449a9593bd12
30 N5a4ffd82d3ee4361bd724b988f5351cc
31 Nfb44beae551e47d88c2bd515c6c6ea33
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021321604
33 https://doi.org/10.1007/s11390-010-9363-8
34 schema:sdDatePublished 2019-04-11T10:37
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N76cc5d661cc0438abf021f441c87e186
37 schema:url http://link.springer.com/10.1007%2Fs11390-010-9363-8
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N10e799ea738f4c519079372ed145b3e5 rdf:first sg:person.014203366775.13
42 rdf:rest Nbeaf113e4ccf412cb56ba729f7fe1490
43 N11b907928b3b4ac88e6b449a9593bd12 schema:name readcube_id
44 schema:value 65962772e8f599d19f022e5432b1c19675c4c4b11c2170239adcbc142f1a26df
45 rdf:type schema:PropertyValue
46 N2aed9bc5948e4c42aea14401bf790abe schema:volumeNumber 25
47 rdf:type schema:PublicationVolume
48 N414ee081d2ca4dee8dddf055326cbdc5 rdf:first sg:person.013071040347.40
49 rdf:rest Nf70673e1043648658ec2f91680b9a373
50 N5a4ffd82d3ee4361bd724b988f5351cc schema:name doi
51 schema:value 10.1007/s11390-010-9363-8
52 rdf:type schema:PropertyValue
53 N76cc5d661cc0438abf021f441c87e186 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 Na57bbfa770de4e9dbf418cc82f546616 schema:issueNumber 4
56 rdf:type schema:PublicationIssue
57 Nbeaf113e4ccf412cb56ba729f7fe1490 rdf:first sg:person.016373710375.21
58 rdf:rest N414ee081d2ca4dee8dddf055326cbdc5
59 Nf70673e1043648658ec2f91680b9a373 rdf:first sg:person.015304522747.36
60 rdf:rest rdf:nil
61 Nfb44beae551e47d88c2bd515c6c6ea33 schema:name dimensions_id
62 schema:value pub.1021321604
63 rdf:type schema:PropertyValue
64 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
65 schema:name Information and Computing Sciences
66 rdf:type schema:DefinedTerm
67 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
68 schema:name Information Systems
69 rdf:type schema:DefinedTerm
70 sg:journal.1320078 schema:issn 1666-6038
71 1666-6046
72 schema:name Journal of Computer Science and Technology
73 rdf:type schema:Periodical
74 sg:person.013071040347.40 schema:affiliation https://www.grid.ac/institutes/grid.27255.37
75 schema:familyName Dong
76 schema:givenName Yong-Quan
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013071040347.40
78 rdf:type schema:Person
79 sg:person.014203366775.13 schema:affiliation https://www.grid.ac/institutes/grid.27255.37
80 schema:familyName Ding
81 schema:givenName Yan-Hui
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014203366775.13
83 rdf:type schema:Person
84 sg:person.015304522747.36 schema:affiliation https://www.grid.ac/institutes/grid.27255.37
85 schema:familyName Peng
86 schema:givenName Zhao-Hui
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015304522747.36
88 rdf:type schema:Person
89 sg:person.016373710375.21 schema:affiliation https://www.grid.ac/institutes/grid.27255.37
90 schema:familyName Li
91 schema:givenName Qing-Zhong
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016373710375.21
93 rdf:type schema:Person
94 sg:pub.10.1007/11965893_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037056041
95 https://doi.org/10.1007/11965893_3
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/bf01589116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022481421
98 https://doi.org/10.1007/bf01589116
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/s11390-008-9157-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000090138
101 https://doi.org/10.1007/s11390-008-9157-4
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/s0169-023x(99)00027-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015409047
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1109/18.910585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061101592
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1109/icde.2005.28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094590689
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1109/icde.2006.69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093609998
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1109/icde.2006.83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095718574
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1145/1014052.1014065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041839161
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1145/1060745.1060761 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017514996
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1145/1102351.1102483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047866690
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1145/1150402.1150457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005761639
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1162/089976600300015880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014388660
122 rdf:type schema:CreativeWork
123 https://doi.org/10.3724/sp.j.1001.2008.02149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071314302
124 rdf:type schema:CreativeWork
125 https://www.grid.ac/institutes/grid.27255.37 schema:alternateName Shandong University
126 schema:name School of Computer Science and Technology, Shandong University, 250014, Jinan, China
127 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...