Can We Determine a Protein Structure Quickly? View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-01

AUTHORS

Ming Li

ABSTRACT

Can we determine a high resolution protein structure quickly, say, in a week? I will show this is possible by the current technologies together with new computational tools discussed in this article. We have three potential paths to explore: X-ray crystallography. While this method has produced the most protein structures in the PDB (Protein Data Bank), the nasty trial-and-error crystallization step remains to be an inhibitive obstacle.NMR (Nuclear Magnetic Resonance) spectroscopy. While the NMR experiments are relatively easy to do, the interpretation of the NMR data for structure calculation takes several months on average.In silico protein structure prediction. Can we actually predict high resolution structures consistently? If the predicted models remain to be labeled as “predicted”, and these structures still need to be experimentally verified by the wet lab methods, then this method at best can serve only as a screening tool. X-ray crystallography. While this method has produced the most protein structures in the PDB (Protein Data Bank), the nasty trial-and-error crystallization step remains to be an inhibitive obstacle. NMR (Nuclear Magnetic Resonance) spectroscopy. While the NMR experiments are relatively easy to do, the interpretation of the NMR data for structure calculation takes several months on average. In silico protein structure prediction. Can we actually predict high resolution structures consistently? If the predicted models remain to be labeled as “predicted”, and these structures still need to be experimentally verified by the wet lab methods, then this method at best can serve only as a screening tool. I investigate the question of “quick protein structure Determination” from a computer scientist point of view and actually answer the more relevant question “what can a computer scientist effectively contribute to this goal”. More... »

PAGES

95-106

References to SciGraph publications

  • 2001-11. MUNIN: Application of three-way decomposition to the analysis of heteronuclear NMR relaxation data** in JOURNAL OF BIOMOLECULAR NMR
  • 1994-09. NMR View: A computer program for the visualization and analysis of NMR data in JOURNAL OF BIOMOLECULAR NMR
  • 2008-07. Automated sequence-specific protein NMR assignment using the memetic algorithm MATCH in JOURNAL OF BIOMOLECULAR NMR
  • 2004-09. Mars - robust automatic backbone assignment of proteins in JOURNAL OF BIOMOLECULAR NMR
  • 1994-07. Bayesian signal extraction from noisy FT NMR spectra in JOURNAL OF BIOMOLECULAR NMR
  • 2008-09. Automated amino acid side-chain NMR assignment of proteins using 13C- and 15N-resolved 3D [1H,1H]-NOESY in JOURNAL OF BIOMOLECULAR NMR
  • 2000-10. Sequence-specific NMR assignment of proteins by global fragment mapping with the program Mapper in JOURNAL OF BIOMOLECULAR NMR
  • 2009-03. Automated protein structure calculation from NMR data in JOURNAL OF BIOMOLECULAR NMR
  • 1991-09. A relational database for sequence-specific protein NMR data in JOURNAL OF BIOMOLECULAR NMR
  • 1996-05. Automated sequence-specific NMR assignment of homologous proteins using the program GARANT in JOURNAL OF BIOMOLECULAR NMR
  • 2007-06. An automated tool for maximum entropy reconstruction of biomolecular NMR spectra in NATURE METHODS
  • 2009-02. Automated structure determination from NMR spectra in EUROPEAN BIOPHYSICS JOURNAL
  • 2002-11. Protein NMR structure determination with automated NOE-identification in the NOESY spectra using the new software ATNOS in JOURNAL OF BIOMOLECULAR NMR
  • 1998-10. CAMRA: Chemical shift based computer aided protein NMR assignments in JOURNAL OF BIOMOLECULAR NMR
  • 2006-03. Optimal isotope labelling for NMR protein structure determinations in NATURE
  • 2008-05. Sequence specific resonance assignment via Multicanonical Monte Carlo search using an ABACUS approach in JOURNAL OF BIOMOLECULAR NMR
  • 2008-04. Structure-based protein NMR assignments using native structural ensembles in JOURNAL OF BIOMOLECULAR NMR
  • 2004-06. An expectation/maximization nuclear vector replacement algorithm for automated NMR resonance assignments in JOURNAL OF BIOMOLECULAR NMR
  • 2001-05. MUNIN: A new approach to multi-dimensional NMR spectra interpretation in JOURNAL OF BIOMOLECULAR NMR
  • 1995-04. A general Bayesian method for an automated signal class recognition in 2D NMR spectra combined with a multivariate discriminant analysis in JOURNAL OF BIOMOLECULAR NMR
  • 2003-06. PACES: Protein sequential assignment by computer-assisted exhaustive search in JOURNAL OF BIOMOLECULAR NMR
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11390-010-9308-2

    DOI

    http://dx.doi.org/10.1007/s11390-010-9308-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1044485050


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Waterloo", 
              "id": "https://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "D.R. Cheriton School of Computer Science, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada", 
                "Dingsheng Technologies, 100085, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Ming", 
            "id": "sg:person.0621576316.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621576316.79"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1111/j.1742-4658.2006.05433.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000319951"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00156617", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000371375", 
              "https://doi.org/10.1007/bf00156617"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00156617", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000371375", 
              "https://doi.org/10.1007/bf00156617"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-2364(92)90260-e", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001819595"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-2364(90)90291-g", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002693561"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00404272", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004332552", 
              "https://doi.org/10.1007/bf00404272"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00404272", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004332552", 
              "https://doi.org/10.1007/bf00404272"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jmre.2002.2569", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005213122"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jmre.1998.1570", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007498554"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp225", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007977523"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1008321629308", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009737160", 
              "https://doi.org/10.1023/a:1008321629308"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.21702", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010010384"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00249-008-0367-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010435591", 
              "https://doi.org/10.1007/s00249-008-0367-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00249-008-0367-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010435591", 
              "https://doi.org/10.1007/s00249-008-0367-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00211755", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013631987", 
              "https://doi.org/10.1007/bf00211755"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00211755", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013631987", 
              "https://doi.org/10.1007/bf00211755"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmr.2005.01.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014542971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1012982830367", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014595474", 
              "https://doi.org/10.1023/a:1012982830367"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0800256105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014826453"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jmbi.1997.1052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016275535"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/protein/gzg081", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018746875"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1121018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019170932"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04525", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019716667", 
              "https://doi.org/10.1038/nature04525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04525", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019716667", 
              "https://doi.org/10.1038/nature04525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04525", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019716667", 
              "https://doi.org/10.1038/nature04525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/332306.332323", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019811836"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/332306.332323", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019811836"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1110/ps.036442.108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023059483"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10858-008-9238-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023469419", 
              "https://doi.org/10.1007/s10858-008-9238-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.22634", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023596622"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.22634", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023596622"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1008318805889", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024244539", 
              "https://doi.org/10.1023/a:1008318805889"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jcc.10011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027255885"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.96.2.332", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028659226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btn165", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030093024"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/640075.640098", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032290163"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/640075.640098", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032290163"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.0020131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032901828"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01875516", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033409469", 
              "https://doi.org/10.1007/bf01875516"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01875516", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033409469", 
              "https://doi.org/10.1007/bf01875516"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1107/s0907444906023821", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033911414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jcc.20389", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037688019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jcc.20389", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037688019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1021614115432", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038114673", 
              "https://doi.org/10.1023/a:1021614115432"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.20724", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038288528"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.20724", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038288528"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-2364(91)90341-p", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039801565"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10858-008-9230-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039893087", 
              "https://doi.org/10.1007/s10858-008-9230-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1011234126930", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039986240", 
              "https://doi.org/10.1023/a:1011234126930"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.96.2.388", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040154819"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btn638", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040777110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth0607-467", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044922905", 
              "https://doi.org/10.1038/nmeth0607-467"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10858-008-9295-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044926556", 
              "https://doi.org/10.1007/s10858-008-9295-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0893-6080(09)80012-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045929124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.sbi.2004.09.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046133771"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmr.2009.04.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046290004"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:jnmr.0000019247.89110.e6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046453706", 
              "https://doi.org/10.1023/b:jnmr.0000019247.89110.e6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:jnmr.0000042954.99056.ad", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046844068", 
              "https://doi.org/10.1023/b:jnmr.0000042954.99056.ad"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00202037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048710670", 
              "https://doi.org/10.1007/bf00202037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00202037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048710670", 
              "https://doi.org/10.1007/bf00202037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1023589029301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049232284", 
              "https://doi.org/10.1023/a:1023589029301"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10858-008-9243-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050254287", 
              "https://doi.org/10.1007/s10858-008-9243-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10858-008-9259-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051160089", 
              "https://doi.org/10.1007/s10858-008-9259-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja051386m", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055838736"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja051386m", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055838736"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1089/cmb.2006.13.229", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059245471"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tcbb.2007.1047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061831233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1113801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062452308"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0219720003000186", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063004510"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0219720010004987", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063004982"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/bibe.2007.4375594", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093702727"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1089/1066527041410436", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111240821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1089/106652700750050934", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111240955"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-01", 
        "datePublishedReg": "2010-01-01", 
        "description": "Can we determine a high resolution protein structure quickly, say, in a week? I will show this is possible by the current technologies together with new computational tools discussed in this article. We have three potential paths to explore: X-ray crystallography. While this method has produced the most protein structures in the PDB (Protein Data Bank), the nasty trial-and-error crystallization step remains to be an inhibitive obstacle.NMR (Nuclear Magnetic Resonance) spectroscopy. While the NMR experiments are relatively easy to do, the interpretation of the NMR data for structure calculation takes several months on average.In silico protein structure prediction. Can we actually predict high resolution structures consistently? If the predicted models remain to be labeled as \u201cpredicted\u201d, and these structures still need to be experimentally verified by the wet lab methods, then this method at best can serve only as a screening tool. X-ray crystallography. While this method has produced the most protein structures in the PDB (Protein Data Bank), the nasty trial-and-error crystallization step remains to be an inhibitive obstacle. NMR (Nuclear Magnetic Resonance) spectroscopy. While the NMR experiments are relatively easy to do, the interpretation of the NMR data for structure calculation takes several months on average. In silico protein structure prediction. Can we actually predict high resolution structures consistently? If the predicted models remain to be labeled as \u201cpredicted\u201d, and these structures still need to be experimentally verified by the wet lab methods, then this method at best can serve only as a screening tool. I investigate the question of \u201cquick protein structure Determination\u201d from a computer scientist point of view and actually answer the more relevant question \u201cwhat can a computer scientist effectively contribute to this goal\u201d.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11390-010-9308-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1320078", 
            "issn": [
              "1666-6046", 
              "1666-6038"
            ], 
            "name": "Journal of Computer Science and Technology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "25"
          }
        ], 
        "name": "Can We Determine a Protein Structure Quickly?", 
        "pagination": "95-106", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "d3e63425b1d473a565d2302c851b0a7d6fe16be58104999a1a17652258245ba3"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11390-010-9308-2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1044485050"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11390-010-9308-2", 
          "https://app.dimensions.ai/details/publication/pub.1044485050"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:04", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89826_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11390-010-9308-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11390-010-9308-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11390-010-9308-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11390-010-9308-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11390-010-9308-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    260 TRIPLES      21 PREDICATES      86 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11390-010-9308-2 schema:about anzsrc-for:02
    2 anzsrc-for:0299
    3 schema:author N4f934d424a89416f8fb7a3ca5bdb1d66
    4 schema:citation sg:pub.10.1007/bf00156617
    5 sg:pub.10.1007/bf00202037
    6 sg:pub.10.1007/bf00211755
    7 sg:pub.10.1007/bf00404272
    8 sg:pub.10.1007/bf01875516
    9 sg:pub.10.1007/s00249-008-0367-z
    10 sg:pub.10.1007/s10858-008-9230-x
    11 sg:pub.10.1007/s10858-008-9238-2
    12 sg:pub.10.1007/s10858-008-9243-5
    13 sg:pub.10.1007/s10858-008-9259-x
    14 sg:pub.10.1007/s10858-008-9295-6
    15 sg:pub.10.1023/a:1008318805889
    16 sg:pub.10.1023/a:1008321629308
    17 sg:pub.10.1023/a:1011234126930
    18 sg:pub.10.1023/a:1012982830367
    19 sg:pub.10.1023/a:1021614115432
    20 sg:pub.10.1023/a:1023589029301
    21 sg:pub.10.1023/b:jnmr.0000019247.89110.e6
    22 sg:pub.10.1023/b:jnmr.0000042954.99056.ad
    23 sg:pub.10.1038/nature04525
    24 sg:pub.10.1038/nmeth0607-467
    25 https://doi.org/10.1002/jcc.10011
    26 https://doi.org/10.1002/jcc.20389
    27 https://doi.org/10.1002/prot.20724
    28 https://doi.org/10.1002/prot.21702
    29 https://doi.org/10.1002/prot.22634
    30 https://doi.org/10.1006/jmbi.1997.1052
    31 https://doi.org/10.1006/jmre.1998.1570
    32 https://doi.org/10.1006/jmre.2002.2569
    33 https://doi.org/10.1016/0022-2364(90)90291-g
    34 https://doi.org/10.1016/0022-2364(91)90341-p
    35 https://doi.org/10.1016/0022-2364(92)90260-e
    36 https://doi.org/10.1016/j.jmr.2005.01.017
    37 https://doi.org/10.1016/j.jmr.2009.04.006
    38 https://doi.org/10.1016/j.sbi.2004.09.003
    39 https://doi.org/10.1016/s0893-6080(09)80012-9
    40 https://doi.org/10.1021/ja051386m
    41 https://doi.org/10.1073/pnas.0800256105
    42 https://doi.org/10.1073/pnas.96.2.332
    43 https://doi.org/10.1073/pnas.96.2.388
    44 https://doi.org/10.1089/106652700750050934
    45 https://doi.org/10.1089/1066527041410436
    46 https://doi.org/10.1089/cmb.2006.13.229
    47 https://doi.org/10.1093/bioinformatics/btn165
    48 https://doi.org/10.1093/bioinformatics/btn638
    49 https://doi.org/10.1093/bioinformatics/btp225
    50 https://doi.org/10.1093/protein/gzg081
    51 https://doi.org/10.1107/s0907444906023821
    52 https://doi.org/10.1109/bibe.2007.4375594
    53 https://doi.org/10.1109/tcbb.2007.1047
    54 https://doi.org/10.1110/ps.036442.108
    55 https://doi.org/10.1111/j.1742-4658.2006.05433.x
    56 https://doi.org/10.1126/science.1113801
    57 https://doi.org/10.1126/science.1121018
    58 https://doi.org/10.1142/s0219720003000186
    59 https://doi.org/10.1142/s0219720010004987
    60 https://doi.org/10.1145/332306.332323
    61 https://doi.org/10.1145/640075.640098
    62 https://doi.org/10.1371/journal.pcbi.0020131
    63 schema:datePublished 2010-01
    64 schema:datePublishedReg 2010-01-01
    65 schema:description Can we determine a high resolution protein structure quickly, say, in a week? I will show this is possible by the current technologies together with new computational tools discussed in this article. We have three potential paths to explore: X-ray crystallography. While this method has produced the most protein structures in the PDB (Protein Data Bank), the nasty trial-and-error crystallization step remains to be an inhibitive obstacle.NMR (Nuclear Magnetic Resonance) spectroscopy. While the NMR experiments are relatively easy to do, the interpretation of the NMR data for structure calculation takes several months on average.In silico protein structure prediction. Can we actually predict high resolution structures consistently? If the predicted models remain to be labeled as “predicted”, and these structures still need to be experimentally verified by the wet lab methods, then this method at best can serve only as a screening tool. X-ray crystallography. While this method has produced the most protein structures in the PDB (Protein Data Bank), the nasty trial-and-error crystallization step remains to be an inhibitive obstacle. NMR (Nuclear Magnetic Resonance) spectroscopy. While the NMR experiments are relatively easy to do, the interpretation of the NMR data for structure calculation takes several months on average. In silico protein structure prediction. Can we actually predict high resolution structures consistently? If the predicted models remain to be labeled as “predicted”, and these structures still need to be experimentally verified by the wet lab methods, then this method at best can serve only as a screening tool. I investigate the question of “quick protein structure Determination” from a computer scientist point of view and actually answer the more relevant question “what can a computer scientist effectively contribute to this goal”.
    66 schema:genre research_article
    67 schema:inLanguage en
    68 schema:isAccessibleForFree true
    69 schema:isPartOf N2d1934ef37c04e19afd86b64890b7863
    70 N41d6e6e70ad14dad995011f0649b1e57
    71 sg:journal.1320078
    72 schema:name Can We Determine a Protein Structure Quickly?
    73 schema:pagination 95-106
    74 schema:productId N68fa73cbaa96439bb3c7c3e0e966d584
    75 Na0c80d0693384a038846cfaf6cc7ee34
    76 Nf1f3c130355441e1bc3895bfb3640ca0
    77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044485050
    78 https://doi.org/10.1007/s11390-010-9308-2
    79 schema:sdDatePublished 2019-04-11T10:04
    80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    81 schema:sdPublisher N0a577d085105464db3d1aa3191f73de1
    82 schema:url http://link.springer.com/10.1007%2Fs11390-010-9308-2
    83 sgo:license sg:explorer/license/
    84 sgo:sdDataset articles
    85 rdf:type schema:ScholarlyArticle
    86 N0a577d085105464db3d1aa3191f73de1 schema:name Springer Nature - SN SciGraph project
    87 rdf:type schema:Organization
    88 N2d1934ef37c04e19afd86b64890b7863 schema:volumeNumber 25
    89 rdf:type schema:PublicationVolume
    90 N41d6e6e70ad14dad995011f0649b1e57 schema:issueNumber 1
    91 rdf:type schema:PublicationIssue
    92 N4f934d424a89416f8fb7a3ca5bdb1d66 rdf:first sg:person.0621576316.79
    93 rdf:rest rdf:nil
    94 N68fa73cbaa96439bb3c7c3e0e966d584 schema:name dimensions_id
    95 schema:value pub.1044485050
    96 rdf:type schema:PropertyValue
    97 Na0c80d0693384a038846cfaf6cc7ee34 schema:name readcube_id
    98 schema:value d3e63425b1d473a565d2302c851b0a7d6fe16be58104999a1a17652258245ba3
    99 rdf:type schema:PropertyValue
    100 Nf1f3c130355441e1bc3895bfb3640ca0 schema:name doi
    101 schema:value 10.1007/s11390-010-9308-2
    102 rdf:type schema:PropertyValue
    103 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    104 schema:name Physical Sciences
    105 rdf:type schema:DefinedTerm
    106 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    107 schema:name Other Physical Sciences
    108 rdf:type schema:DefinedTerm
    109 sg:journal.1320078 schema:issn 1666-6038
    110 1666-6046
    111 schema:name Journal of Computer Science and Technology
    112 rdf:type schema:Periodical
    113 sg:person.0621576316.79 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
    114 schema:familyName Li
    115 schema:givenName Ming
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621576316.79
    117 rdf:type schema:Person
    118 sg:pub.10.1007/bf00156617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000371375
    119 https://doi.org/10.1007/bf00156617
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/bf00202037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048710670
    122 https://doi.org/10.1007/bf00202037
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/bf00211755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013631987
    125 https://doi.org/10.1007/bf00211755
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/bf00404272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004332552
    128 https://doi.org/10.1007/bf00404272
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/bf01875516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033409469
    131 https://doi.org/10.1007/bf01875516
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/s00249-008-0367-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1010435591
    134 https://doi.org/10.1007/s00249-008-0367-z
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/s10858-008-9230-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039893087
    137 https://doi.org/10.1007/s10858-008-9230-x
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/s10858-008-9238-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023469419
    140 https://doi.org/10.1007/s10858-008-9238-2
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/s10858-008-9243-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050254287
    143 https://doi.org/10.1007/s10858-008-9243-5
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/s10858-008-9259-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051160089
    146 https://doi.org/10.1007/s10858-008-9259-x
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/s10858-008-9295-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044926556
    149 https://doi.org/10.1007/s10858-008-9295-6
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1023/a:1008318805889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024244539
    152 https://doi.org/10.1023/a:1008318805889
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1023/a:1008321629308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009737160
    155 https://doi.org/10.1023/a:1008321629308
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1023/a:1011234126930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039986240
    158 https://doi.org/10.1023/a:1011234126930
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1023/a:1012982830367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014595474
    161 https://doi.org/10.1023/a:1012982830367
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1023/a:1021614115432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038114673
    164 https://doi.org/10.1023/a:1021614115432
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1023/a:1023589029301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049232284
    167 https://doi.org/10.1023/a:1023589029301
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1023/b:jnmr.0000019247.89110.e6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046453706
    170 https://doi.org/10.1023/b:jnmr.0000019247.89110.e6
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1023/b:jnmr.0000042954.99056.ad schema:sameAs https://app.dimensions.ai/details/publication/pub.1046844068
    173 https://doi.org/10.1023/b:jnmr.0000042954.99056.ad
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1038/nature04525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019716667
    176 https://doi.org/10.1038/nature04525
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1038/nmeth0607-467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044922905
    179 https://doi.org/10.1038/nmeth0607-467
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1002/jcc.10011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027255885
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1002/jcc.20389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037688019
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1002/prot.20724 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038288528
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1002/prot.21702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010010384
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1002/prot.22634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023596622
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1006/jmbi.1997.1052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016275535
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1006/jmre.1998.1570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007498554
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1006/jmre.2002.2569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005213122
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1016/0022-2364(90)90291-g schema:sameAs https://app.dimensions.ai/details/publication/pub.1002693561
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1016/0022-2364(91)90341-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1039801565
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1016/0022-2364(92)90260-e schema:sameAs https://app.dimensions.ai/details/publication/pub.1001819595
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1016/j.jmr.2005.01.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014542971
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1016/j.jmr.2009.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046290004
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1016/j.sbi.2004.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046133771
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1016/s0893-6080(09)80012-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045929124
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1021/ja051386m schema:sameAs https://app.dimensions.ai/details/publication/pub.1055838736
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1073/pnas.0800256105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014826453
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1073/pnas.96.2.332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028659226
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1073/pnas.96.2.388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040154819
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1089/106652700750050934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111240955
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1089/1066527041410436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111240821
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1089/cmb.2006.13.229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059245471
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1093/bioinformatics/btn165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030093024
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1093/bioinformatics/btn638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040777110
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1093/bioinformatics/btp225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007977523
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1093/protein/gzg081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018746875
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1107/s0907444906023821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033911414
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1109/bibe.2007.4375594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093702727
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1109/tcbb.2007.1047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061831233
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1110/ps.036442.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023059483
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1111/j.1742-4658.2006.05433.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000319951
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1126/science.1113801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062452308
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1126/science.1121018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019170932
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1142/s0219720003000186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063004510
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1142/s0219720010004987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063004982
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1145/332306.332323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019811836
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1145/640075.640098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032290163
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1371/journal.pcbi.0020131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032901828
    256 rdf:type schema:CreativeWork
    257 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
    258 schema:name D.R. Cheriton School of Computer Science, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada
    259 Dingsheng Technologies, 100085, Beijing, China
    260 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...