Metagenomics: Facts and Artifacts, and Computational Challenges View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-01-20

AUTHORS

John C. Wooley, Yuzhen Ye

ABSTRACT

Metagenomics is the study of microbial communities sampled directly from their natural environment, without prior culturing. By enabling an analysis of populations including many (so-far) unculturable and often unknown microbes, metagenomics is revolutionizing the field of microbiology, and has excited researchers in many disciplines that could benefit from the study of environmental microbes, including those in ecology, environmental sciences, and biomedicine. Specific computational and statistical tools have been developed for metagenomic data analysis and comparison. New studies, however, have revealed various kinds of artifacts present in metagenomics data caused by limitations in the experimental protocols and/or inadequate data analysis procedures, which often lead to incorrect conclusions about a microbial community. Here, we review some of the artifacts, such as overestimation of species diversity and incorrect estimation of gene family frequencies, and discuss emerging computational approaches to address them. We also review potential challenges that metagenomics may encounter with the extensive application of next-generation sequencing (NGS) techniques. More... »

PAGES

71-81

References to SciGraph publications

  • 2008-04-28. Gene prediction in metagenomic fragments: A large scale machine learning approach in BMC BIOINFORMATICS
  • 2008-07-03. Taxonomic distribution of large DNA viruses in the sea in GENOME BIOLOGY
  • 2006-12. An obesity-associated gut microbiome with increased capacity for energy harvest in NATURE
  • 2009-07-09. Systematic artifacts in metagenomes from complex microbial communities in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2008-12-17. Barcodes for genomes and applications in BMC BIOINFORMATICS
  • 2006-07. Amplification of complex gene libraries by emulsion PCR in NATURE METHODS
  • 2009-05. Metatranscriptomics reveals unique microbial small RNAs in the ocean’s water column in NATURE
  • 2008-03-12. Functional metagenomic profiling of nine biomes in NATURE
  • 1989. S in GABLER KLEINES LEXIKON WIRTSCHAFT
  • 2009-05-18. Bioprospecting metagenomes: glycosyl hydrolases for converting biomass in BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS
  • 2004-10-26. TETRA: a web-service and a stand-alone program for the analysis and comparison of tetranucleotide usage patterns in DNA sequences in BMC BIOINFORMATICS
  • 2008-01-01. CompostBin: A DNA Composition-Based Algorithm for Binning Environmental Shotgun Reads in RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY
  • 2007-10-17. The Human Microbiome Project in NATURE
  • 2008-01-31. Evaluating different approaches that test whether microbial communities have the same structure in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2009-08-02. Phymm and PhymmBL: metagenomic phylogenetic classification with interpolated Markov models in NATURE METHODS
  • 2004-02-01. Community structure and metabolism through reconstruction of microbial genomes from the environment in NATURE
  • 2006-07-27. Anticipating the $1,000 genome in GENOME BIOLOGY
  • 2008-01-23. A statistical toolbox for metagenomics: assessing functional diversity in microbial communities in BMC BIOINFORMATICS
  • 2009. A Statistical Framework for the Functional Analysis of Metagenomes in RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY
  • 2008-10-13. A simple, fast, and accurate method of phylogenomic inference in GENOME BIOLOGY
  • 2008-11-30. A core gut microbiome in obese and lean twins in NATURE
  • 2005-03-02. PHACCS, an online tool for estimating the structure and diversity of uncultured viral communities using metagenomic information in BMC BIOINFORMATICS
  • 2009-01-30. Methods for comparative metagenomics in BMC BIOINFORMATICS
  • 2007-01-15. Prediction of effective genome size in metagenomic samples in GENOME BIOLOGY
  • 2008-09-19. The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes in BMC BIOINFORMATICS
  • 2008-02-10. Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex in NATURE METHODS
  • 2006-09-17. Symbiosis insights through metagenomic analysis of a microbial consortium in NATURE
  • 2005-06. Metagenomics and industrial applications in NATURE REVIEWS MICROBIOLOGY
  • 2008-10-30. Shotgun metaproteomics of the human distal gut microbiota in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11390-010-9306-4

    DOI

    http://dx.doi.org/10.1007/s11390-010-9306-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1015316974

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/20648230


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Center for Research on BioSystems, Calit2, University of Califormia San Diego, 92093, La Jolla, CA, U.S.A.", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Center for Research on BioSystems, Calit2, University of Califormia San Diego, 92093, La Jolla, CA, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wooley", 
            "givenName": "John C.", 
            "id": "sg:person.0637213677.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637213677.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Informatics and Computing, Indiana University, 47408, Bloomington, Indiana, U.S.A.", 
              "id": "http://www.grid.ac/institutes/grid.411377.7", 
              "name": [
                "School of Informatics and Computing, Indiana University, 47408, Bloomington, Indiana, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ye", 
            "givenName": "Yuzhen", 
            "id": "sg:person.01015367307.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015367307.45"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nmeth896", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046539255", 
              "https://doi.org/10.1038/nmeth896"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1358", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008886215", 
              "https://doi.org/10.1038/nmeth.1358"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05414", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023893418", 
              "https://doi.org/10.1038/nature05414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1754-6834-2-10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007556277", 
              "https://doi.org/10.1186/1754-6834-2-10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2008-9-7-r106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043079124", 
              "https://doi.org/10.1186/gb-2008-9-7-r106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06810", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047805213", 
              "https://doi.org/10.1038/nature06810"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05192", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037896124", 
              "https://doi.org/10.1038/nature05192"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2009.72", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023938739", 
              "https://doi.org/10.1038/ismej.2009.72"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-6-41", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003527503", 
              "https://doi.org/10.1186/1471-2105-6-41"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07540", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030170002", 
              "https://doi.org/10.1038/nature07540"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2006-7-7-112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012723040", 
              "https://doi.org/10.1186/gb-2006-7-7-112"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-5-163", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017298406", 
              "https://doi.org/10.1186/1471-2105-5-163"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-10-s1-s12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012287730", 
              "https://doi.org/10.1186/1471-2105-10-s1-s12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02340", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023089166", 
              "https://doi.org/10.1038/nature02340"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2008-9-10-r151", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023248704", 
              "https://doi.org/10.1186/gb-2008-9-10-r151"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro1161", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042562010", 
              "https://doi.org/10.1038/nrmicro1161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-78839-3_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004083256", 
              "https://doi.org/10.1007/978-3-540-78839-3_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-9-546", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016296571", 
              "https://doi.org/10.1186/1471-2105-9-546"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-02008-7_35", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035330194", 
              "https://doi.org/10.1007/978-3-642-02008-7_35"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1184", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042740345", 
              "https://doi.org/10.1038/nmeth.1184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-9-386", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006083026", 
              "https://doi.org/10.1186/1471-2105-9-386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06244", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009917183", 
              "https://doi.org/10.1038/nature06244"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-322-83887-2_19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017742151", 
              "https://doi.org/10.1007/978-3-322-83887-2_19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2008.5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029709848", 
              "https://doi.org/10.1038/ismej.2008.5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08055", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029921262", 
              "https://doi.org/10.1038/nature08055"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-9-217", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021077093", 
              "https://doi.org/10.1186/1471-2105-9-217"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-9-34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043483909", 
              "https://doi.org/10.1186/1471-2105-9-34"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2008.108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001388414", 
              "https://doi.org/10.1038/ismej.2008.108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2007-8-1-r10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044994861", 
              "https://doi.org/10.1186/gb-2007-8-1-r10"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-01-20", 
        "datePublishedReg": "2010-01-20", 
        "description": "Metagenomics is the study of microbial communities sampled directly from their natural environment, without prior culturing. By enabling an analysis of populations including many (so-far) unculturable and often unknown microbes, metagenomics is revolutionizing the field of microbiology, and has excited researchers in many disciplines that could benefit from the study of environmental microbes, including those in ecology, environmental sciences, and biomedicine. Specific computational and statistical tools have been developed for metagenomic data analysis and comparison. New studies, however, have revealed various kinds of artifacts present in metagenomics data caused by limitations in the experimental protocols and/or inadequate data analysis procedures, which often lead to incorrect conclusions about a microbial community. Here, we review some of the artifacts, such as overestimation of species diversity and incorrect estimation of gene family frequencies, and discuss emerging computational approaches to address them. We also review potential challenges that metagenomics may encounter with the extensive application of next-generation sequencing (NGS) techniques.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11390-010-9306-4", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2529355", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1357568", 
            "issn": [
              "1000-9000", 
              "1860-4749"
            ], 
            "name": "Journal of Computer Science and Technology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "25"
          }
        ], 
        "keywords": [
          "microbial communities", 
          "next-generation sequencing techniques", 
          "analysis of population", 
          "species diversity", 
          "field of microbiology", 
          "metagenomic data analysis", 
          "environmental microbes", 
          "unknown microbes", 
          "metagenomic data", 
          "sequencing techniques", 
          "metagenomics", 
          "microbes", 
          "computational challenges", 
          "statistical tools", 
          "natural environment", 
          "computational approach", 
          "data analysis procedures", 
          "family frequency", 
          "ecology", 
          "incorrect conclusions", 
          "diversity", 
          "incorrect estimation", 
          "community", 
          "analysis procedure", 
          "microbiology", 
          "new studies", 
          "extensive applications", 
          "data analysis", 
          "experimental protocol", 
          "estimation", 
          "population", 
          "environmental science", 
          "field", 
          "analysis", 
          "study", 
          "environment", 
          "applications", 
          "approach", 
          "technique", 
          "biomedicine", 
          "kind", 
          "tool", 
          "kinds of artifacts", 
          "frequency", 
          "fact", 
          "procedure", 
          "science", 
          "potential challenges", 
          "comparison", 
          "data", 
          "challenges", 
          "limitations", 
          "protocol", 
          "overestimation", 
          "artifacts", 
          "researchers", 
          "conclusion", 
          "disciplines"
        ], 
        "name": "Metagenomics: Facts and Artifacts, and Computational Challenges", 
        "pagination": "71-81", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1015316974"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11390-010-9306-4"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "20648230"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11390-010-9306-4", 
          "https://app.dimensions.ai/details/publication/pub.1015316974"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T20:54", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_509.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11390-010-9306-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11390-010-9306-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11390-010-9306-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11390-010-9306-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11390-010-9306-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    243 TRIPLES      21 PREDICATES      111 URIs      75 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11390-010-9306-4 schema:about anzsrc-for:08
    2 schema:author N612678b372c94a0baebd2df31ce6b382
    3 schema:citation sg:pub.10.1007/978-3-322-83887-2_19
    4 sg:pub.10.1007/978-3-540-78839-3_3
    5 sg:pub.10.1007/978-3-642-02008-7_35
    6 sg:pub.10.1038/ismej.2008.108
    7 sg:pub.10.1038/ismej.2008.5
    8 sg:pub.10.1038/ismej.2009.72
    9 sg:pub.10.1038/nature02340
    10 sg:pub.10.1038/nature05192
    11 sg:pub.10.1038/nature05414
    12 sg:pub.10.1038/nature06244
    13 sg:pub.10.1038/nature06810
    14 sg:pub.10.1038/nature07540
    15 sg:pub.10.1038/nature08055
    16 sg:pub.10.1038/nmeth.1184
    17 sg:pub.10.1038/nmeth.1358
    18 sg:pub.10.1038/nmeth896
    19 sg:pub.10.1038/nrmicro1161
    20 sg:pub.10.1186/1471-2105-10-s1-s12
    21 sg:pub.10.1186/1471-2105-5-163
    22 sg:pub.10.1186/1471-2105-6-41
    23 sg:pub.10.1186/1471-2105-9-217
    24 sg:pub.10.1186/1471-2105-9-34
    25 sg:pub.10.1186/1471-2105-9-386
    26 sg:pub.10.1186/1471-2105-9-546
    27 sg:pub.10.1186/1754-6834-2-10
    28 sg:pub.10.1186/gb-2006-7-7-112
    29 sg:pub.10.1186/gb-2007-8-1-r10
    30 sg:pub.10.1186/gb-2008-9-10-r151
    31 sg:pub.10.1186/gb-2008-9-7-r106
    32 schema:datePublished 2010-01-20
    33 schema:datePublishedReg 2010-01-20
    34 schema:description Metagenomics is the study of microbial communities sampled directly from their natural environment, without prior culturing. By enabling an analysis of populations including many (so-far) unculturable and often unknown microbes, metagenomics is revolutionizing the field of microbiology, and has excited researchers in many disciplines that could benefit from the study of environmental microbes, including those in ecology, environmental sciences, and biomedicine. Specific computational and statistical tools have been developed for metagenomic data analysis and comparison. New studies, however, have revealed various kinds of artifacts present in metagenomics data caused by limitations in the experimental protocols and/or inadequate data analysis procedures, which often lead to incorrect conclusions about a microbial community. Here, we review some of the artifacts, such as overestimation of species diversity and incorrect estimation of gene family frequencies, and discuss emerging computational approaches to address them. We also review potential challenges that metagenomics may encounter with the extensive application of next-generation sequencing (NGS) techniques.
    35 schema:genre article
    36 schema:isAccessibleForFree true
    37 schema:isPartOf Nab1eb4606ac4487fb1714877922650a6
    38 Nefb8719c0fb34d54907a6606e083fb98
    39 sg:journal.1357568
    40 schema:keywords analysis
    41 analysis of population
    42 analysis procedure
    43 applications
    44 approach
    45 artifacts
    46 biomedicine
    47 challenges
    48 community
    49 comparison
    50 computational approach
    51 computational challenges
    52 conclusion
    53 data
    54 data analysis
    55 data analysis procedures
    56 disciplines
    57 diversity
    58 ecology
    59 environment
    60 environmental microbes
    61 environmental science
    62 estimation
    63 experimental protocol
    64 extensive applications
    65 fact
    66 family frequency
    67 field
    68 field of microbiology
    69 frequency
    70 incorrect conclusions
    71 incorrect estimation
    72 kind
    73 kinds of artifacts
    74 limitations
    75 metagenomic data
    76 metagenomic data analysis
    77 metagenomics
    78 microbes
    79 microbial communities
    80 microbiology
    81 natural environment
    82 new studies
    83 next-generation sequencing techniques
    84 overestimation
    85 population
    86 potential challenges
    87 procedure
    88 protocol
    89 researchers
    90 science
    91 sequencing techniques
    92 species diversity
    93 statistical tools
    94 study
    95 technique
    96 tool
    97 unknown microbes
    98 schema:name Metagenomics: Facts and Artifacts, and Computational Challenges
    99 schema:pagination 71-81
    100 schema:productId N45bda8e4ff744b64b1b6f380de994b05
    101 Nc9de2191cd184edb852c8b8ba9bb10e0
    102 Nd85a5b71976847d5bf55861ecab26ff3
    103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015316974
    104 https://doi.org/10.1007/s11390-010-9306-4
    105 schema:sdDatePublished 2022-11-24T20:54
    106 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    107 schema:sdPublisher N98430036c63840b39ee025e63ce507db
    108 schema:url https://doi.org/10.1007/s11390-010-9306-4
    109 sgo:license sg:explorer/license/
    110 sgo:sdDataset articles
    111 rdf:type schema:ScholarlyArticle
    112 N45bda8e4ff744b64b1b6f380de994b05 schema:name pubmed_id
    113 schema:value 20648230
    114 rdf:type schema:PropertyValue
    115 N612678b372c94a0baebd2df31ce6b382 rdf:first sg:person.0637213677.28
    116 rdf:rest Naf4de871dbd9401f8c1e6b07a4873480
    117 N98430036c63840b39ee025e63ce507db schema:name Springer Nature - SN SciGraph project
    118 rdf:type schema:Organization
    119 Nab1eb4606ac4487fb1714877922650a6 schema:volumeNumber 25
    120 rdf:type schema:PublicationVolume
    121 Naf4de871dbd9401f8c1e6b07a4873480 rdf:first sg:person.01015367307.45
    122 rdf:rest rdf:nil
    123 Nc9de2191cd184edb852c8b8ba9bb10e0 schema:name doi
    124 schema:value 10.1007/s11390-010-9306-4
    125 rdf:type schema:PropertyValue
    126 Nd85a5b71976847d5bf55861ecab26ff3 schema:name dimensions_id
    127 schema:value pub.1015316974
    128 rdf:type schema:PropertyValue
    129 Nefb8719c0fb34d54907a6606e083fb98 schema:issueNumber 1
    130 rdf:type schema:PublicationIssue
    131 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    132 schema:name Information and Computing Sciences
    133 rdf:type schema:DefinedTerm
    134 sg:grant.2529355 http://pending.schema.org/fundedItem sg:pub.10.1007/s11390-010-9306-4
    135 rdf:type schema:MonetaryGrant
    136 sg:journal.1357568 schema:issn 1000-9000
    137 1860-4749
    138 schema:name Journal of Computer Science and Technology
    139 schema:publisher Springer Nature
    140 rdf:type schema:Periodical
    141 sg:person.01015367307.45 schema:affiliation grid-institutes:grid.411377.7
    142 schema:familyName Ye
    143 schema:givenName Yuzhen
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015367307.45
    145 rdf:type schema:Person
    146 sg:person.0637213677.28 schema:affiliation grid-institutes:None
    147 schema:familyName Wooley
    148 schema:givenName John C.
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637213677.28
    150 rdf:type schema:Person
    151 sg:pub.10.1007/978-3-322-83887-2_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017742151
    152 https://doi.org/10.1007/978-3-322-83887-2_19
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/978-3-540-78839-3_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004083256
    155 https://doi.org/10.1007/978-3-540-78839-3_3
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/978-3-642-02008-7_35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035330194
    158 https://doi.org/10.1007/978-3-642-02008-7_35
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1038/ismej.2008.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001388414
    161 https://doi.org/10.1038/ismej.2008.108
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1038/ismej.2008.5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029709848
    164 https://doi.org/10.1038/ismej.2008.5
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1038/ismej.2009.72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023938739
    167 https://doi.org/10.1038/ismej.2009.72
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1038/nature02340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023089166
    170 https://doi.org/10.1038/nature02340
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1038/nature05192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037896124
    173 https://doi.org/10.1038/nature05192
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1038/nature05414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023893418
    176 https://doi.org/10.1038/nature05414
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1038/nature06244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009917183
    179 https://doi.org/10.1038/nature06244
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1038/nature06810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047805213
    182 https://doi.org/10.1038/nature06810
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1038/nature07540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030170002
    185 https://doi.org/10.1038/nature07540
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1038/nature08055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029921262
    188 https://doi.org/10.1038/nature08055
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/nmeth.1184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042740345
    191 https://doi.org/10.1038/nmeth.1184
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/nmeth.1358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008886215
    194 https://doi.org/10.1038/nmeth.1358
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1038/nmeth896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046539255
    197 https://doi.org/10.1038/nmeth896
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/nrmicro1161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042562010
    200 https://doi.org/10.1038/nrmicro1161
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1186/1471-2105-10-s1-s12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012287730
    203 https://doi.org/10.1186/1471-2105-10-s1-s12
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1186/1471-2105-5-163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017298406
    206 https://doi.org/10.1186/1471-2105-5-163
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1186/1471-2105-6-41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003527503
    209 https://doi.org/10.1186/1471-2105-6-41
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1186/1471-2105-9-217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021077093
    212 https://doi.org/10.1186/1471-2105-9-217
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1186/1471-2105-9-34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043483909
    215 https://doi.org/10.1186/1471-2105-9-34
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1186/1471-2105-9-386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006083026
    218 https://doi.org/10.1186/1471-2105-9-386
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1186/1471-2105-9-546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016296571
    221 https://doi.org/10.1186/1471-2105-9-546
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1186/1754-6834-2-10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007556277
    224 https://doi.org/10.1186/1754-6834-2-10
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1186/gb-2006-7-7-112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012723040
    227 https://doi.org/10.1186/gb-2006-7-7-112
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1186/gb-2007-8-1-r10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044994861
    230 https://doi.org/10.1186/gb-2007-8-1-r10
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1186/gb-2008-9-10-r151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023248704
    233 https://doi.org/10.1186/gb-2008-9-10-r151
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1186/gb-2008-9-7-r106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043079124
    236 https://doi.org/10.1186/gb-2008-9-7-r106
    237 rdf:type schema:CreativeWork
    238 grid-institutes:None schema:alternateName Center for Research on BioSystems, Calit2, University of Califormia San Diego, 92093, La Jolla, CA, U.S.A.
    239 schema:name Center for Research on BioSystems, Calit2, University of Califormia San Diego, 92093, La Jolla, CA, U.S.A.
    240 rdf:type schema:Organization
    241 grid-institutes:grid.411377.7 schema:alternateName School of Informatics and Computing, Indiana University, 47408, Bloomington, Indiana, U.S.A.
    242 schema:name School of Informatics and Computing, Indiana University, 47408, Bloomington, Indiana, U.S.A.
    243 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...