New Information Distance Measure and Its Application in Question Answering System View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-07

AUTHORS

Xian Zhang, Yu Hao, Xiao-Yan Zhu, Ming Li

ABSTRACT

In a question answering (QA) system, the fundamental problem is how to measure the distance between a question and an answer, hence ranking different answers. We demonstrate that such a distance can be precisely and mathematically defined. Not only such a definition is possible, it is actually provably better than any other feasible definitions. Not only such an ultimate definition is possible, but also it can be conveniently and fruitfully applied to construct a QA system. We have built such a system — QUANTA. Extensive experiments are conducted to justify the new theory. More... »

PAGES

557-572

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11390-008-9152-9

DOI

http://dx.doi.org/10.1007/s11390-008-9152-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022686529


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economic Theory", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Department of Computer Science and Technology, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Xian", 
        "id": "sg:person.015662743745.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015662743745.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Department of Computer Science and Technology, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hao", 
        "givenName": "Yu", 
        "id": "sg:person.014270173173.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014270173173.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Department of Computer Science and Technology, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Xiao-Yan", 
        "id": "sg:person.010317723315.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010317723315.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "David R. Cheriton School of Computer Science, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Ming", 
        "id": "sg:person.0621576316.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621576316.79"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/1014052.1014077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000193805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0164-1212(03)00217-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005740677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1220575.1220634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007234503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/17.2.149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009738168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1281192.1281285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010331285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45728-3_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010619251", 
          "https://doi.org/10.1007/3-540-45728-3_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3975(01)00033-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011035660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3975(01)00032-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012591734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1961189.1961199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013637525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018041822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3975(01)00035-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023645926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/956863.956886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023897505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1046456.1046460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027038983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2005.07.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028285420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2005.07.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028285420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3975(01)00036-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030309073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032298195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.048702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039739390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.048702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039739390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/775047.775053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040379396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/asi.20348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040727120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/asi.20348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040727120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008023416823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040959457", 
          "https://doi.org/10.1023/a:1008023416823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-017-2390-9_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043560139", 
          "https://doi.org/10.1007/978-94-017-2390-9_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044748700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3975(01)00037-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045451086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/0148926042728449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046543730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0898-1221(97)90213-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053644000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0898-1221(97)90213-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053644000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/scientificamerican0603-76", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056544393", 
          "https://doi.org/10.1038/scientificamerican0603-76"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10635150590905984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058369551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10635150590905984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058369551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.681318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061100692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2004.830793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061650154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2004.838101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061650298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2005.844059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061650455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2007.48", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061661815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129054107004905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062896783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i2004-10483-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064237240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cbms.2006.68", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093659452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cbms.2006.68", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093659452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/sma.2001.923389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094380030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1219840.1219885", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099221891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1219840.1219885", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099221891"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-07", 
    "datePublishedReg": "2008-07-01", 
    "description": "In a question answering (QA) system, the fundamental problem is how to measure the distance between a question and an answer, hence ranking different answers. We demonstrate that such a distance can be precisely and mathematically defined. Not only such a definition is possible, it is actually provably better than any other feasible definitions. Not only such an ultimate definition is possible, but also it can be conveniently and fruitfully applied to construct a QA system. We have built such a system \u2014 QUANTA. Extensive experiments are conducted to justify the new theory.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11390-008-9152-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1320078", 
        "issn": [
          "1666-6046", 
          "1666-6038"
        ], 
        "name": "Journal of Computer Science and Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "name": "New Information Distance Measure and Its Application in Question Answering System", 
    "pagination": "557-572", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6c14bd9385bb0ee20610c52f016b5aea2e096f29746be9c7ae705c33147184d9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11390-008-9152-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022686529"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11390-008-9152-9", 
      "https://app.dimensions.ai/details/publication/pub.1022686529"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000521.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11390-008-9152-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11390-008-9152-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11390-008-9152-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11390-008-9152-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11390-008-9152-9'


 

This table displays all metadata directly associated to this object as RDF triples.

200 TRIPLES      21 PREDICATES      64 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11390-008-9152-9 schema:about anzsrc-for:14
2 anzsrc-for:1401
3 schema:author Nbd05d58c9e75401286e935feca6810ad
4 schema:citation sg:pub.10.1007/3-540-45728-3_3
5 sg:pub.10.1007/978-94-017-2390-9_10
6 sg:pub.10.1023/a:1008023416823
7 sg:pub.10.1038/scientificamerican0603-76
8 https://doi.org/10.1002/asi.20348
9 https://doi.org/10.1016/j.neunet.2005.07.010
10 https://doi.org/10.1016/s0164-1212(03)00217-6
11 https://doi.org/10.1016/s0304-3975(01)00032-9
12 https://doi.org/10.1016/s0304-3975(01)00033-0
13 https://doi.org/10.1016/s0304-3975(01)00035-4
14 https://doi.org/10.1016/s0304-3975(01)00036-6
15 https://doi.org/10.1016/s0304-3975(01)00037-8
16 https://doi.org/10.1016/s0898-1221(97)90213-3
17 https://doi.org/10.1080/10635150590905984
18 https://doi.org/10.1093/bioinformatics/17.2.149
19 https://doi.org/10.1093/bioinformatics/btg295
20 https://doi.org/10.1093/bioinformatics/bth031
21 https://doi.org/10.1093/bioinformatics/bti806
22 https://doi.org/10.1103/physrevlett.88.048702
23 https://doi.org/10.1109/18.681318
24 https://doi.org/10.1109/cbms.2006.68
25 https://doi.org/10.1109/sma.2001.923389
26 https://doi.org/10.1109/tit.2004.830793
27 https://doi.org/10.1109/tit.2004.838101
28 https://doi.org/10.1109/tit.2005.844059
29 https://doi.org/10.1109/tkde.2007.48
30 https://doi.org/10.1142/s0129054107004905
31 https://doi.org/10.1145/1014052.1014077
32 https://doi.org/10.1145/1046456.1046460
33 https://doi.org/10.1145/1281192.1281285
34 https://doi.org/10.1145/1961189.1961199
35 https://doi.org/10.1145/775047.775053
36 https://doi.org/10.1145/956863.956886
37 https://doi.org/10.1162/0148926042728449
38 https://doi.org/10.1209/epl/i2004-10483-y
39 https://doi.org/10.3115/1219840.1219885
40 https://doi.org/10.3115/1220575.1220634
41 schema:datePublished 2008-07
42 schema:datePublishedReg 2008-07-01
43 schema:description In a question answering (QA) system, the fundamental problem is how to measure the distance between a question and an answer, hence ranking different answers. We demonstrate that such a distance can be precisely and mathematically defined. Not only such a definition is possible, it is actually provably better than any other feasible definitions. Not only such an ultimate definition is possible, but also it can be conveniently and fruitfully applied to construct a QA system. We have built such a system — QUANTA. Extensive experiments are conducted to justify the new theory.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree false
47 schema:isPartOf N90c17667778d45d4a04fbebb6ccc9ee5
48 N95f70f3a830f422ea93d4f71ae0292b7
49 sg:journal.1320078
50 schema:name New Information Distance Measure and Its Application in Question Answering System
51 schema:pagination 557-572
52 schema:productId N09c5746cc9814045923893193df21f37
53 N87ca09f1c4e64d7f86ba84c5fce217b2
54 Nb88372e7e6644fdca5fed514b2b7f205
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022686529
56 https://doi.org/10.1007/s11390-008-9152-9
57 schema:sdDatePublished 2019-04-10T18:22
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N77232023e75a49c3b5db39a2d9a8990f
60 schema:url http://link.springer.com/10.1007%2Fs11390-008-9152-9
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N09c5746cc9814045923893193df21f37 schema:name doi
65 schema:value 10.1007/s11390-008-9152-9
66 rdf:type schema:PropertyValue
67 N309b4b018b3b432fb0f39c025d03f0db rdf:first sg:person.010317723315.12
68 rdf:rest N3b0ee79c17374fcebf941a449fe17637
69 N3b0ee79c17374fcebf941a449fe17637 rdf:first sg:person.0621576316.79
70 rdf:rest rdf:nil
71 N77232023e75a49c3b5db39a2d9a8990f schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 N87ca09f1c4e64d7f86ba84c5fce217b2 schema:name dimensions_id
74 schema:value pub.1022686529
75 rdf:type schema:PropertyValue
76 N897cafab34d04808a58923f331edd082 rdf:first sg:person.014270173173.47
77 rdf:rest N309b4b018b3b432fb0f39c025d03f0db
78 N90c17667778d45d4a04fbebb6ccc9ee5 schema:issueNumber 4
79 rdf:type schema:PublicationIssue
80 N95f70f3a830f422ea93d4f71ae0292b7 schema:volumeNumber 23
81 rdf:type schema:PublicationVolume
82 Nb88372e7e6644fdca5fed514b2b7f205 schema:name readcube_id
83 schema:value 6c14bd9385bb0ee20610c52f016b5aea2e096f29746be9c7ae705c33147184d9
84 rdf:type schema:PropertyValue
85 Nbd05d58c9e75401286e935feca6810ad rdf:first sg:person.015662743745.35
86 rdf:rest N897cafab34d04808a58923f331edd082
87 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
88 schema:name Economics
89 rdf:type schema:DefinedTerm
90 anzsrc-for:1401 schema:inDefinedTermSet anzsrc-for:
91 schema:name Economic Theory
92 rdf:type schema:DefinedTerm
93 sg:journal.1320078 schema:issn 1666-6038
94 1666-6046
95 schema:name Journal of Computer Science and Technology
96 rdf:type schema:Periodical
97 sg:person.010317723315.12 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
98 schema:familyName Zhu
99 schema:givenName Xiao-Yan
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010317723315.12
101 rdf:type schema:Person
102 sg:person.014270173173.47 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
103 schema:familyName Hao
104 schema:givenName Yu
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014270173173.47
106 rdf:type schema:Person
107 sg:person.015662743745.35 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
108 schema:familyName Zhang
109 schema:givenName Xian
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015662743745.35
111 rdf:type schema:Person
112 sg:person.0621576316.79 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
113 schema:familyName Li
114 schema:givenName Ming
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621576316.79
116 rdf:type schema:Person
117 sg:pub.10.1007/3-540-45728-3_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010619251
118 https://doi.org/10.1007/3-540-45728-3_3
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/978-94-017-2390-9_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043560139
121 https://doi.org/10.1007/978-94-017-2390-9_10
122 rdf:type schema:CreativeWork
123 sg:pub.10.1023/a:1008023416823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040959457
124 https://doi.org/10.1023/a:1008023416823
125 rdf:type schema:CreativeWork
126 sg:pub.10.1038/scientificamerican0603-76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056544393
127 https://doi.org/10.1038/scientificamerican0603-76
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1002/asi.20348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040727120
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.neunet.2005.07.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028285420
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/s0164-1212(03)00217-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005740677
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/s0304-3975(01)00032-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012591734
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/s0304-3975(01)00033-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011035660
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/s0304-3975(01)00035-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023645926
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/s0304-3975(01)00036-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030309073
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/s0304-3975(01)00037-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045451086
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/s0898-1221(97)90213-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053644000
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1080/10635150590905984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058369551
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1093/bioinformatics/17.2.149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009738168
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1093/bioinformatics/btg295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018041822
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1093/bioinformatics/bth031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032298195
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1093/bioinformatics/bti806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044748700
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevlett.88.048702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039739390
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/18.681318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061100692
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/cbms.2006.68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093659452
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1109/sma.2001.923389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094380030
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/tit.2004.830793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061650154
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/tit.2004.838101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061650298
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1109/tit.2005.844059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061650455
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/tkde.2007.48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061661815
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1142/s0129054107004905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062896783
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1145/1014052.1014077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000193805
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1145/1046456.1046460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027038983
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1145/1281192.1281285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010331285
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1145/1961189.1961199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013637525
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1145/775047.775053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040379396
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1145/956863.956886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023897505
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1162/0148926042728449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046543730
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1209/epl/i2004-10483-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1064237240
190 rdf:type schema:CreativeWork
191 https://doi.org/10.3115/1219840.1219885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099221891
192 rdf:type schema:CreativeWork
193 https://doi.org/10.3115/1220575.1220634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007234503
194 rdf:type schema:CreativeWork
195 https://www.grid.ac/institutes/grid.12527.33 schema:alternateName Tsinghua University
196 schema:name Department of Computer Science and Technology, Tsinghua University, 100084, Beijing, China
197 rdf:type schema:Organization
198 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
199 schema:name David R. Cheriton School of Computer Science, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada
200 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...