Effects of topography on soil organic carbon stocks in grasslands of a semiarid alpine region, northwestern China View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Meng Zhu, Qi Feng, Mengxu Zhang, Wei Liu, Yanyan Qin, Ravinesh C. Deo, Chengqi Zhang

ABSTRACT

Soil organic carbon (SOC) in mountainous regions is characterized by strong topography-induced heterogeneity, which may contribute to large uncertainties in regional SOC stock estimation. However, the quantitative effects of topography on SOC stocks in semiarid alpine grasslands are currently not well understood. Therefore, the purpose of this research study is to determine the role of topography in shaping the spatial patterns of SOC stocks. Soils from the summit, shoulder, backslope, footslope, and toeslope positions along nine toposequences within three elevation-dependent grassland types (i.e., montane desert steppe at ~ 2450 m, montane steppe at ~ 2900 m, and subalpine meadow at ~ 3350 m) are sampled at four depths (0–10, 10–20, 20–40, and 40–60 cm). SOC content, bulk density, soil texture, soil water content, and grassland biomass are determined. The general linear model (GLM) is employed to quantify the effects of topography on the SOC stocks. Ordinary least squares regressions are performed to explore the underlying relationships between SOC stocks and the other edaphic factors. In accordance with the present results, the SOC stocks at 0–60 cm show an increasing trend in respect to the elevation zone, with the highest stock being approximately 37.70 g m−2 in the subalpine meadow, about 2.07 and 3.41 times larger than that in the montane steppe and montane desert steppe, respectively. Along the toposequences, it is revealed the SOC stocks are maximal at toeslope, reaching to 14.98, 31.76, and 49.52 kg m−2, which are also significantly larger than those at the shoulder by a factor of 1.38, 2.31, and 1.44, in montane desert steppe, montane steppe, and subalpine meadow, respectively. Topography totally is seen to explain about 84% of the overall variation in SOC stocks, of which 70.61 and 9.74% are attributed to elevation zone and slope position, while the slope aspect and slope gradient are seen to plausibly explain only about 1.84 and 0.01%, respectively. The elevation zone and the slope position are seen to markedly shape the spatial patterns of the SOC stocks, and thus, they may be considered as key indicating factors in constructing the optimal SOC estimation model in such semiarid alpine grasslands. More... »

PAGES

1640-1650

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11368-018-2203-0

DOI

http://dx.doi.org/10.1007/s11368-018-2203-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110401394


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0503", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Soil Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 730000, Lanzhou, China", 
            "University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Meng", 
        "id": "sg:person.016402616146.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016402616146.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwest Institute of Eco-Environment and Resources", 
          "id": "https://www.grid.ac/institutes/grid.496923.3", 
          "name": [
            "Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 730000, Lanzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Feng", 
        "givenName": "Qi", 
        "id": "sg:person.01325425117.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325425117.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 730000, Lanzhou, China", 
            "University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Mengxu", 
        "id": "sg:person.014626267627.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014626267627.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwest Institute of Eco-Environment and Resources", 
          "id": "https://www.grid.ac/institutes/grid.496923.3", 
          "name": [
            "Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 730000, Lanzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Wei", 
        "id": "sg:person.016221230627.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016221230627.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwest Institute of Eco-Environment and Resources", 
          "id": "https://www.grid.ac/institutes/grid.496923.3", 
          "name": [
            "Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 730000, Lanzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qin", 
        "givenName": "Yanyan", 
        "id": "sg:person.010214043223.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010214043223.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Southern Queensland", 
          "id": "https://www.grid.ac/institutes/grid.1048.d", 
          "name": [
            "School of Agricultural Computational and Environmental Sciences, Institute of Life Sciences and the Environment (IAg&E), University of Southern Queensland, Springfield, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deo", 
        "givenName": "Ravinesh C.", 
        "id": "sg:person.01100607661.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100607661.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwest Institute of Eco-Environment and Resources", 
          "id": "https://www.grid.ac/institutes/grid.496923.3", 
          "name": [
            "Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 730000, Lanzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Chengqi", 
        "id": "sg:person.014102462023.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014102462023.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.5849/forsci.14-231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000473549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo2732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000831327", 
          "https://doi.org/10.1038/ngeo2732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geoderma.2009.11.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001688914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0269-7491(01)00219-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003253919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/1051-0761(2000)010[0423:tvdoso]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006333768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecoleng.2015.06.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007350941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomorph.2013.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009870486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/se-6-125-2015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012731049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.catena.2015.08.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014240682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005gb002576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015048378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2486.2009.02123.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016075844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2486.2009.02123.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016075844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016657418", 
          "https://doi.org/10.1038/nature04038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016657418", 
          "https://doi.org/10.1038/nature04038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016657418", 
          "https://doi.org/10.1038/nature04038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.catena.2014.07.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017047133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geoderma.2013.10.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018565330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geoderma.2015.08.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018722102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geoderma.2015.08.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018722102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.catena.2017.01.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019737464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolmodel.2008.04.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021755847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geoderma.2015.03.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022332649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2745.2006.01104.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023601472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2745.2006.01104.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023601472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/gcb.13257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025081984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geoderma.2013.04.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025475737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1654-1103.2002.tb02087.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028482216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemgeo.2009.01.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031039675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ldr.2284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034227584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11368-009-0110-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036335498", 
          "https://doi.org/10.1007/s11368-009-0110-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11368-009-0110-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036335498", 
          "https://doi.org/10.1007/s11368-009-0110-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11368-016-1373-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037554883", 
          "https://doi.org/10.1007/s11368-016-1373-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2015.12.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039446209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.catena.2016.07.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041867329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.still.2006.05.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043780854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geoderma.2006.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044372602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hyp.8162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050137803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agee.2011.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050946100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2486.2008.01591.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051049150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geoderma.2016.09.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052027273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geoderma.2016.10.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052929177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2136/sssaj2000.6462046x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069049257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2166/wst.2014.259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069146984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076993205", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.catena.2017.02.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084063866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.catena.2017.06.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086084308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2017.08.180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091498468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geoderma.2017.12.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100189009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11368-018-1951-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101210643", 
          "https://doi.org/10.1007/s11368-018-1951-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11368-018-1951-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101210643", 
          "https://doi.org/10.1007/s11368-018-1951-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geoderma.2018.03.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103161774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11368-018-2007-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104236661", 
          "https://doi.org/10.1007/s11368-018-2007-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Soil organic carbon (SOC) in mountainous regions is characterized by strong topography-induced heterogeneity, which may contribute to large uncertainties in regional SOC stock estimation. However, the quantitative effects of topography on SOC stocks in semiarid alpine grasslands are currently not well understood. Therefore, the purpose of this research study is to determine the role of topography in shaping the spatial patterns of SOC stocks. Soils from the summit, shoulder, backslope, footslope, and toeslope positions along nine toposequences within three elevation-dependent grassland types (i.e., montane desert steppe at ~ 2450 m, montane steppe at ~ 2900 m, and subalpine meadow at ~ 3350 m) are sampled at four depths (0\u201310, 10\u201320, 20\u201340, and 40\u201360 cm). SOC content, bulk density, soil texture, soil water content, and grassland biomass are determined. The general linear model (GLM) is employed to quantify the effects of topography on the SOC stocks. Ordinary least squares regressions are performed to explore the underlying relationships between SOC stocks and the other edaphic factors. In accordance with the present results, the SOC stocks at 0\u201360 cm show an increasing trend in respect to the elevation zone, with the highest stock being approximately 37.70 g m\u22122 in the subalpine meadow, about 2.07 and 3.41 times larger than that in the montane steppe and montane desert steppe, respectively. Along the toposequences, it is revealed the SOC stocks are maximal at toeslope, reaching to 14.98, 31.76, and 49.52 kg m\u22122, which are also significantly larger than those at the shoulder by a factor of 1.38, 2.31, and 1.44, in montane desert steppe, montane steppe, and subalpine meadow, respectively. Topography totally is seen to explain about 84% of the overall variation in SOC stocks, of which 70.61 and 9.74% are attributed to elevation zone and slope position, while the slope aspect and slope gradient are seen to plausibly explain only about 1.84 and 0.01%, respectively. The elevation zone and the slope position are seen to markedly shape the spatial patterns of the SOC stocks, and thus, they may be considered as key indicating factors in constructing the optimal SOC estimation model in such semiarid alpine grasslands.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11368-018-2203-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1034521", 
        "issn": [
          "1439-0108", 
          "1614-7480"
        ], 
        "name": "Journal of Soils and Sediments", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "Effects of topography on soil organic carbon stocks in grasslands of a semiarid alpine region, northwestern China", 
    "pagination": "1640-1650", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "acf7f85d5c7469da0f7f4e2b2f9d7611cc6ab9fc549f8722ba8bf3411e2242be"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11368-018-2203-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110401394"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11368-018-2203-0", 
      "https://app.dimensions.ai/details/publication/pub.1110401394"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000366_0000000366/records_112045_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11368-018-2203-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11368-018-2203-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11368-018-2203-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11368-018-2203-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11368-018-2203-0'


 

This table displays all metadata directly associated to this object as RDF triples.

251 TRIPLES      21 PREDICATES      72 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11368-018-2203-0 schema:about anzsrc-for:05
2 anzsrc-for:0503
3 schema:author Nd43c298b723a4870aa39cac19523beed
4 schema:citation sg:pub.10.1007/s11368-009-0110-0
5 sg:pub.10.1007/s11368-016-1373-x
6 sg:pub.10.1007/s11368-018-1951-1
7 sg:pub.10.1007/s11368-018-2007-2
8 sg:pub.10.1038/nature04038
9 sg:pub.10.1038/ngeo2732
10 https://app.dimensions.ai/details/publication/pub.1076993205
11 https://doi.org/10.1002/hyp.8162
12 https://doi.org/10.1002/ldr.2284
13 https://doi.org/10.1016/j.agee.2011.05.002
14 https://doi.org/10.1016/j.catena.2014.07.012
15 https://doi.org/10.1016/j.catena.2015.08.017
16 https://doi.org/10.1016/j.catena.2016.07.025
17 https://doi.org/10.1016/j.catena.2017.01.011
18 https://doi.org/10.1016/j.catena.2017.02.025
19 https://doi.org/10.1016/j.catena.2017.06.017
20 https://doi.org/10.1016/j.chemgeo.2009.01.004
21 https://doi.org/10.1016/j.ecoleng.2015.06.030
22 https://doi.org/10.1016/j.ecolmodel.2008.04.010
23 https://doi.org/10.1016/j.geoderma.2006.01.005
24 https://doi.org/10.1016/j.geoderma.2009.11.021
25 https://doi.org/10.1016/j.geoderma.2013.04.009
26 https://doi.org/10.1016/j.geoderma.2013.10.013
27 https://doi.org/10.1016/j.geoderma.2015.03.008
28 https://doi.org/10.1016/j.geoderma.2015.08.038
29 https://doi.org/10.1016/j.geoderma.2016.09.029
30 https://doi.org/10.1016/j.geoderma.2016.10.013
31 https://doi.org/10.1016/j.geoderma.2017.12.007
32 https://doi.org/10.1016/j.geoderma.2018.03.032
33 https://doi.org/10.1016/j.geomorph.2013.05.004
34 https://doi.org/10.1016/j.scitotenv.2015.12.022
35 https://doi.org/10.1016/j.scitotenv.2017.08.180
36 https://doi.org/10.1016/j.still.2006.05.007
37 https://doi.org/10.1016/s0269-7491(01)00219-6
38 https://doi.org/10.1029/2005gb002576
39 https://doi.org/10.1111/gcb.13257
40 https://doi.org/10.1111/j.1365-2486.2008.01591.x
41 https://doi.org/10.1111/j.1365-2486.2009.02123.x
42 https://doi.org/10.1111/j.1365-2745.2006.01104.x
43 https://doi.org/10.1111/j.1654-1103.2002.tb02087.x
44 https://doi.org/10.1890/1051-0761(2000)010[0423:tvdoso]2.0.co;2
45 https://doi.org/10.2136/sssaj2000.6462046x
46 https://doi.org/10.2166/wst.2014.259
47 https://doi.org/10.5194/se-6-125-2015
48 https://doi.org/10.5849/forsci.14-231
49 schema:datePublished 2019-04
50 schema:datePublishedReg 2019-04-01
51 schema:description Soil organic carbon (SOC) in mountainous regions is characterized by strong topography-induced heterogeneity, which may contribute to large uncertainties in regional SOC stock estimation. However, the quantitative effects of topography on SOC stocks in semiarid alpine grasslands are currently not well understood. Therefore, the purpose of this research study is to determine the role of topography in shaping the spatial patterns of SOC stocks. Soils from the summit, shoulder, backslope, footslope, and toeslope positions along nine toposequences within three elevation-dependent grassland types (i.e., montane desert steppe at ~ 2450 m, montane steppe at ~ 2900 m, and subalpine meadow at ~ 3350 m) are sampled at four depths (0–10, 10–20, 20–40, and 40–60 cm). SOC content, bulk density, soil texture, soil water content, and grassland biomass are determined. The general linear model (GLM) is employed to quantify the effects of topography on the SOC stocks. Ordinary least squares regressions are performed to explore the underlying relationships between SOC stocks and the other edaphic factors. In accordance with the present results, the SOC stocks at 0–60 cm show an increasing trend in respect to the elevation zone, with the highest stock being approximately 37.70 g m−2 in the subalpine meadow, about 2.07 and 3.41 times larger than that in the montane steppe and montane desert steppe, respectively. Along the toposequences, it is revealed the SOC stocks are maximal at toeslope, reaching to 14.98, 31.76, and 49.52 kg m−2, which are also significantly larger than those at the shoulder by a factor of 1.38, 2.31, and 1.44, in montane desert steppe, montane steppe, and subalpine meadow, respectively. Topography totally is seen to explain about 84% of the overall variation in SOC stocks, of which 70.61 and 9.74% are attributed to elevation zone and slope position, while the slope aspect and slope gradient are seen to plausibly explain only about 1.84 and 0.01%, respectively. The elevation zone and the slope position are seen to markedly shape the spatial patterns of the SOC stocks, and thus, they may be considered as key indicating factors in constructing the optimal SOC estimation model in such semiarid alpine grasslands.
52 schema:genre research_article
53 schema:inLanguage en
54 schema:isAccessibleForFree false
55 schema:isPartOf N0e0e035470274ff7ac923da0af199048
56 N243c89fdc4bb4bec957d9238e51183bd
57 sg:journal.1034521
58 schema:name Effects of topography on soil organic carbon stocks in grasslands of a semiarid alpine region, northwestern China
59 schema:pagination 1640-1650
60 schema:productId N1320772d3fda4f6e9d4587b745069a0a
61 Nbbc432b894e241a693183339f1ce2b8f
62 Nd9a7c06bd29742e7afc88063d880e7f3
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110401394
64 https://doi.org/10.1007/s11368-018-2203-0
65 schema:sdDatePublished 2019-04-11T13:04
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N98145ca71f4542f1a24e6c55ea3069eb
68 schema:url https://link.springer.com/10.1007%2Fs11368-018-2203-0
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N0e0e035470274ff7ac923da0af199048 schema:volumeNumber 19
73 rdf:type schema:PublicationVolume
74 N1320772d3fda4f6e9d4587b745069a0a schema:name dimensions_id
75 schema:value pub.1110401394
76 rdf:type schema:PropertyValue
77 N243c89fdc4bb4bec957d9238e51183bd schema:issueNumber 4
78 rdf:type schema:PublicationIssue
79 N32016ed3c4734d5190d7246c3636825c rdf:first sg:person.014626267627.96
80 rdf:rest Nc213462049fd4f7d9a2b335602f3c890
81 N353a87185c12411692e9911ccece69cb rdf:first sg:person.01100607661.17
82 rdf:rest Nbf0045d65b0b4688bddb4e267ca1f3e9
83 N454231b2d4df4174961e354597d5ae03 rdf:first sg:person.010214043223.28
84 rdf:rest N353a87185c12411692e9911ccece69cb
85 N98145ca71f4542f1a24e6c55ea3069eb schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 Nbbc432b894e241a693183339f1ce2b8f schema:name readcube_id
88 schema:value acf7f85d5c7469da0f7f4e2b2f9d7611cc6ab9fc549f8722ba8bf3411e2242be
89 rdf:type schema:PropertyValue
90 Nbf0045d65b0b4688bddb4e267ca1f3e9 rdf:first sg:person.014102462023.83
91 rdf:rest rdf:nil
92 Nc213462049fd4f7d9a2b335602f3c890 rdf:first sg:person.016221230627.82
93 rdf:rest N454231b2d4df4174961e354597d5ae03
94 Nd43c298b723a4870aa39cac19523beed rdf:first sg:person.016402616146.64
95 rdf:rest Nea927b69f4264507abcd0d811b4727f5
96 Nd9a7c06bd29742e7afc88063d880e7f3 schema:name doi
97 schema:value 10.1007/s11368-018-2203-0
98 rdf:type schema:PropertyValue
99 Nea927b69f4264507abcd0d811b4727f5 rdf:first sg:person.01325425117.52
100 rdf:rest N32016ed3c4734d5190d7246c3636825c
101 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
102 schema:name Environmental Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0503 schema:inDefinedTermSet anzsrc-for:
105 schema:name Soil Sciences
106 rdf:type schema:DefinedTerm
107 sg:journal.1034521 schema:issn 1439-0108
108 1614-7480
109 schema:name Journal of Soils and Sediments
110 rdf:type schema:Periodical
111 sg:person.010214043223.28 schema:affiliation https://www.grid.ac/institutes/grid.496923.3
112 schema:familyName Qin
113 schema:givenName Yanyan
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010214043223.28
115 rdf:type schema:Person
116 sg:person.01100607661.17 schema:affiliation https://www.grid.ac/institutes/grid.1048.d
117 schema:familyName Deo
118 schema:givenName Ravinesh C.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100607661.17
120 rdf:type schema:Person
121 sg:person.01325425117.52 schema:affiliation https://www.grid.ac/institutes/grid.496923.3
122 schema:familyName Feng
123 schema:givenName Qi
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325425117.52
125 rdf:type schema:Person
126 sg:person.014102462023.83 schema:affiliation https://www.grid.ac/institutes/grid.496923.3
127 schema:familyName Zhang
128 schema:givenName Chengqi
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014102462023.83
130 rdf:type schema:Person
131 sg:person.014626267627.96 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
132 schema:familyName Zhang
133 schema:givenName Mengxu
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014626267627.96
135 rdf:type schema:Person
136 sg:person.016221230627.82 schema:affiliation https://www.grid.ac/institutes/grid.496923.3
137 schema:familyName Liu
138 schema:givenName Wei
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016221230627.82
140 rdf:type schema:Person
141 sg:person.016402616146.64 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
142 schema:familyName Zhu
143 schema:givenName Meng
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016402616146.64
145 rdf:type schema:Person
146 sg:pub.10.1007/s11368-009-0110-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036335498
147 https://doi.org/10.1007/s11368-009-0110-0
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s11368-016-1373-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037554883
150 https://doi.org/10.1007/s11368-016-1373-x
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/s11368-018-1951-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101210643
153 https://doi.org/10.1007/s11368-018-1951-1
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/s11368-018-2007-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104236661
156 https://doi.org/10.1007/s11368-018-2007-2
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/nature04038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016657418
159 https://doi.org/10.1038/nature04038
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/ngeo2732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000831327
162 https://doi.org/10.1038/ngeo2732
163 rdf:type schema:CreativeWork
164 https://app.dimensions.ai/details/publication/pub.1076993205 schema:CreativeWork
165 https://doi.org/10.1002/hyp.8162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050137803
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1002/ldr.2284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034227584
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.agee.2011.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050946100
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.catena.2014.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017047133
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.catena.2015.08.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014240682
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.catena.2016.07.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041867329
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.catena.2017.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019737464
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.catena.2017.02.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084063866
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.catena.2017.06.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086084308
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.chemgeo.2009.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031039675
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.ecoleng.2015.06.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007350941
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.ecolmodel.2008.04.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021755847
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.geoderma.2006.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044372602
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.geoderma.2009.11.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001688914
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.geoderma.2013.04.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025475737
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.geoderma.2013.10.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018565330
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.geoderma.2015.03.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022332649
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.geoderma.2015.08.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018722102
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.geoderma.2016.09.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052027273
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.geoderma.2016.10.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052929177
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.geoderma.2017.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100189009
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.geoderma.2018.03.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103161774
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.geomorph.2013.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009870486
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.scitotenv.2015.12.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039446209
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/j.scitotenv.2017.08.180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091498468
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/j.still.2006.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043780854
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/s0269-7491(01)00219-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003253919
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1029/2005gb002576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015048378
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1111/gcb.13257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025081984
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1111/j.1365-2486.2008.01591.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051049150
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1111/j.1365-2486.2009.02123.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016075844
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1111/j.1365-2745.2006.01104.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023601472
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1111/j.1654-1103.2002.tb02087.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028482216
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1890/1051-0761(2000)010[0423:tvdoso]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006333768
232 rdf:type schema:CreativeWork
233 https://doi.org/10.2136/sssaj2000.6462046x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069049257
234 rdf:type schema:CreativeWork
235 https://doi.org/10.2166/wst.2014.259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069146984
236 rdf:type schema:CreativeWork
237 https://doi.org/10.5194/se-6-125-2015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012731049
238 rdf:type schema:CreativeWork
239 https://doi.org/10.5849/forsci.14-231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000473549
240 rdf:type schema:CreativeWork
241 https://www.grid.ac/institutes/grid.1048.d schema:alternateName University of Southern Queensland
242 schema:name School of Agricultural Computational and Environmental Sciences, Institute of Life Sciences and the Environment (IAg&E), University of Southern Queensland, Springfield, Australia
243 rdf:type schema:Organization
244 https://www.grid.ac/institutes/grid.410726.6 schema:alternateName University of Chinese Academy of Sciences
245 schema:name Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 730000, Lanzhou, China
246 University of Chinese Academy of Sciences, 100049, Beijing, China
247 rdf:type schema:Organization
248 https://www.grid.ac/institutes/grid.496923.3 schema:alternateName Northwest Institute of Eco-Environment and Resources
249 schema:name Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 730000, Lanzhou, China
250 Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 730000, Lanzhou, China
251 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...