Soil depth spatial prediction by fuzzy soil-landscape model View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-03

AUTHORS

Qiang Wang, Bingfang Wu, Alfred Stein, Liang Zhu, Yuan Zeng

ABSTRACT

Soil depth is a soil property that influences land use, land suitability, and earth surface processes. This article presents a simple method for predicting soil depth by constructing a membership function based on fuzzy C-means. This paper incorporates the soil type map, the land use map, and one type of DEM data to construct a soil-landscape model for soil depth prediction. It compares a fuzzy C-means classifier that includes expert judgment with a conditional autoregressive (CAR) model. Prediction efficiency was evaluated in the Three Gorges area of China using the root-mean-square error (RMSE) and the agreement coefficient (AC) of predictions at validation points. The prediction stability of soil depth values from the fuzzy model is close to the regression model; the AC value indicates a better agreement by the fuzzy C-means method (0.428) than when using the regression model (0.420). The purposive sampling approach was provided by our method by the centroid where the fuzzy membership value is above 0.85, which improves the efficiency of the field sampling. The expansibility of our method is limited as the typical centroid sample location is dependent on the study area. The fuzzy membership value must be recalculated to provide a new typical centroid for field sample when enlarging the study area. The results indicate that the soil-landscape model constructed by the fuzzy membership value with fuzzy C-means method and the conventional soil map provides better quality soil depth spatial information on soil depth. More... »

PAGES

1041-1051

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11368-017-1779-0

DOI

http://dx.doi.org/10.1007/s11368-017-1779-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091242082


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0503", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Soil Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Anhui Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.411389.6", 
          "name": [
            "The Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 100094, Beijing, China", 
            "Schools of Resources and Environment, Anhui Agricultural University, 230036, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Qiang", 
        "id": "sg:person.011227642201.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011227642201.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Remote Sensing and Digital Earth", 
          "id": "https://www.grid.ac/institutes/grid.458443.a", 
          "name": [
            "The Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 100094, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Bingfang", 
        "id": "sg:person.01027467505.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027467505.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Institute for Geo-Information Science and Earth Observation", 
          "id": "https://www.grid.ac/institutes/grid.466856.f", 
          "name": [
            "Faculty of Geo-Information Science and Earth Observation (ITC), 7500 AA, Enschede, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stein", 
        "givenName": "Alfred", 
        "id": "sg:person.013105002112.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013105002112.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Remote Sensing and Digital Earth", 
          "id": "https://www.grid.ac/institutes/grid.458443.a", 
          "name": [
            "The Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 100094, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Liang", 
        "id": "sg:person.012227703031.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012227703031.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Remote Sensing and Digital Earth", 
          "id": "https://www.grid.ac/institutes/grid.458443.a", 
          "name": [
            "The Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 100094, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zeng", 
        "givenName": "Yuan", 
        "id": "sg:person.01371174506.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371174506.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1029/2000jb900253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000262944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/136588199241382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001099893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-3800(95)00161-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001191021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0016-7061(96)00024-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002221373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-017-3048-8_23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002367105", 
          "https://doi.org/10.1007/978-94-017-3048-8_23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geoderma.2006.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002522475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1002-0160(10)60025-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006865459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0016-7061(03)00223-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006999004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0016-7061(03)00223-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006999004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.catena.2009.05.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008082073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0016-7061(91)90089-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008766921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0016-7061(91)90089-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008766921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-555x(98)00095-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010788253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hyp.3360050103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011361795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1464-1909(01)85012-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012490653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2008.09.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012652952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geoderma.2008.09.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014413506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2011jf002296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014758909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geoderma.2003.08.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015853278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomorph.2015.10.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016260055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-11-569-2007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016933661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.catena.2003.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017577287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.catena.2003.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017577287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0269-7491(96)00031-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019711549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0341-8162(91)90051-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023247572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0341-8162(91)90051-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023247572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-3758(03)00111-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025647359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-3758(03)00111-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025647359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geoderma.2009.05.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026910559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02693799508902047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027718260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geoderma.2009.05.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033544678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geoderma.2010.03.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038786514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2389.1990.tb00080.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038996749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0016-7061(98)00137-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039699188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0098-3004(84)90020-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041496652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0098-3004(84)90020-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041496652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11111-006-0027-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048264563", 
          "https://doi.org/10.1007/s11111-006-0027-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jare.2002.1073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053445778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jare.2002.1073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053445778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/91.413225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061247739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1191/0309133303pp366ra", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064151977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1191/0309133303pp366ra", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064151977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2136/sssaj1961.03615995002500050023x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069038459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2136/sssaj1989.03615995005300060026x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069046246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2136/sssaj1993.03615995005700020026x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069047305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2136/sssaj1997.03615995006100020022x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069048363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2136/sssaj1999.03615995006300010021x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069048783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2136/sssaj2000.6462046x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069049257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2136/sssaj2001.6551463x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069049493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2136/sssaj2003.0264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069049841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2136/sssaj2010.0002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069051788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2136/sssaspecpub33.c8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088347499"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-03", 
    "datePublishedReg": "2018-03-01", 
    "description": "Soil depth is a soil property that influences land use, land suitability, and earth surface processes. This article presents a simple method for predicting soil depth by constructing a membership function based on fuzzy C-means. This paper incorporates the soil type map, the land use map, and one type of DEM data to construct a soil-landscape model for soil depth prediction. It compares a fuzzy C-means classifier that includes expert judgment with a conditional autoregressive (CAR) model. Prediction efficiency was evaluated in the Three Gorges area of China using the root-mean-square error (RMSE) and the agreement coefficient (AC) of predictions at validation points. The prediction stability of soil depth values from the fuzzy model is close to the regression model; the AC value indicates a better agreement by the fuzzy C-means method (0.428) than when using the regression model (0.420). The purposive sampling approach was provided by our method by the centroid where the fuzzy membership value is above 0.85, which improves the efficiency of the field sampling. The expansibility of our method is limited as the typical centroid sample location is dependent on the study area. The fuzzy membership value must be recalculated to provide a new typical centroid for field sample when enlarging the study area. The results indicate that the soil-landscape model constructed by the fuzzy membership value with fuzzy C-means method and the conventional soil map provides better quality soil depth spatial information on soil depth.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11368-017-1779-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1034521", 
        "issn": [
          "1439-0108", 
          "1614-7480"
        ], 
        "name": "Journal of Soils and Sediments", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Soil depth spatial prediction by fuzzy soil-landscape model", 
    "pagination": "1041-1051", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a5ca874b6bc1b96d5db5fa64061c62c613aae79039aef1f3a0853d77db25b975"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11368-017-1779-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091242082"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11368-017-1779-0", 
      "https://app.dimensions.ai/details/publication/pub.1091242082"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54334_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11368-017-1779-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11368-017-1779-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11368-017-1779-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11368-017-1779-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11368-017-1779-0'


 

This table displays all metadata directly associated to this object as RDF triples.

230 TRIPLES      21 PREDICATES      71 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11368-017-1779-0 schema:about anzsrc-for:05
2 anzsrc-for:0503
3 schema:author N5247c4154f644ffebcf8e16fabfb8bd2
4 schema:citation sg:pub.10.1007/978-94-017-3048-8_23
5 sg:pub.10.1007/s11111-006-0027-0
6 https://doi.org/10.1002/hyp.3360050103
7 https://doi.org/10.1006/jare.2002.1073
8 https://doi.org/10.1016/0016-7061(91)90089-c
9 https://doi.org/10.1016/0016-7061(96)00024-9
10 https://doi.org/10.1016/0098-3004(84)90020-7
11 https://doi.org/10.1016/0269-7491(96)00031-0
12 https://doi.org/10.1016/0304-3800(95)00161-1
13 https://doi.org/10.1016/0341-8162(91)90051-x
14 https://doi.org/10.1016/j.catena.2003.07.002
15 https://doi.org/10.1016/j.catena.2009.05.005
16 https://doi.org/10.1016/j.geoderma.2003.08.018
17 https://doi.org/10.1016/j.geoderma.2006.06.001
18 https://doi.org/10.1016/j.geoderma.2008.09.013
19 https://doi.org/10.1016/j.geoderma.2009.05.015
20 https://doi.org/10.1016/j.geoderma.2009.05.024
21 https://doi.org/10.1016/j.geoderma.2010.03.013
22 https://doi.org/10.1016/j.geomorph.2015.10.007
23 https://doi.org/10.1016/j.rse.2008.09.019
24 https://doi.org/10.1016/s0016-7061(03)00223-4
25 https://doi.org/10.1016/s0016-7061(98)00137-2
26 https://doi.org/10.1016/s0169-555x(98)00095-6
27 https://doi.org/10.1016/s0378-3758(03)00111-3
28 https://doi.org/10.1016/s1002-0160(10)60025-2
29 https://doi.org/10.1016/s1464-1909(01)85012-7
30 https://doi.org/10.1029/2000jb900253
31 https://doi.org/10.1029/2011jf002296
32 https://doi.org/10.1080/02693799508902047
33 https://doi.org/10.1080/136588199241382
34 https://doi.org/10.1109/91.413225
35 https://doi.org/10.1111/j.1365-2389.1990.tb00080.x
36 https://doi.org/10.1191/0309133303pp366ra
37 https://doi.org/10.2136/sssaj1961.03615995002500050023x
38 https://doi.org/10.2136/sssaj1989.03615995005300060026x
39 https://doi.org/10.2136/sssaj1993.03615995005700020026x
40 https://doi.org/10.2136/sssaj1997.03615995006100020022x
41 https://doi.org/10.2136/sssaj1999.03615995006300010021x
42 https://doi.org/10.2136/sssaj2000.6462046x
43 https://doi.org/10.2136/sssaj2001.6551463x
44 https://doi.org/10.2136/sssaj2003.0264
45 https://doi.org/10.2136/sssaj2010.0002
46 https://doi.org/10.2136/sssaspecpub33.c8
47 https://doi.org/10.5194/hess-11-569-2007
48 schema:datePublished 2018-03
49 schema:datePublishedReg 2018-03-01
50 schema:description Soil depth is a soil property that influences land use, land suitability, and earth surface processes. This article presents a simple method for predicting soil depth by constructing a membership function based on fuzzy C-means. This paper incorporates the soil type map, the land use map, and one type of DEM data to construct a soil-landscape model for soil depth prediction. It compares a fuzzy C-means classifier that includes expert judgment with a conditional autoregressive (CAR) model. Prediction efficiency was evaluated in the Three Gorges area of China using the root-mean-square error (RMSE) and the agreement coefficient (AC) of predictions at validation points. The prediction stability of soil depth values from the fuzzy model is close to the regression model; the AC value indicates a better agreement by the fuzzy C-means method (0.428) than when using the regression model (0.420). The purposive sampling approach was provided by our method by the centroid where the fuzzy membership value is above 0.85, which improves the efficiency of the field sampling. The expansibility of our method is limited as the typical centroid sample location is dependent on the study area. The fuzzy membership value must be recalculated to provide a new typical centroid for field sample when enlarging the study area. The results indicate that the soil-landscape model constructed by the fuzzy membership value with fuzzy C-means method and the conventional soil map provides better quality soil depth spatial information on soil depth.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree false
54 schema:isPartOf N2c8d125e937a4eaf9a14cf66bd784fd0
55 N31c30cc5cd6a43a483c8381cbf7df0fd
56 sg:journal.1034521
57 schema:name Soil depth spatial prediction by fuzzy soil-landscape model
58 schema:pagination 1041-1051
59 schema:productId N452537eea0af4f11a979461792e94c65
60 Nc93d9857abd54ed5a1df3e630f9804af
61 Ndd5ef73b0ae14a22a65b16b912721039
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091242082
63 https://doi.org/10.1007/s11368-017-1779-0
64 schema:sdDatePublished 2019-04-11T10:21
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher Nbcd119e87ef246f0927cd7c47048899a
67 schema:url https://link.springer.com/10.1007%2Fs11368-017-1779-0
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N2c8d125e937a4eaf9a14cf66bd784fd0 schema:issueNumber 3
72 rdf:type schema:PublicationIssue
73 N31c30cc5cd6a43a483c8381cbf7df0fd schema:volumeNumber 18
74 rdf:type schema:PublicationVolume
75 N38e74cbe7a864bd9ac30a26c4a8c3cca rdf:first sg:person.01027467505.86
76 rdf:rest N9e878e0eb45b423fbb6b31ae3f0f3d41
77 N452537eea0af4f11a979461792e94c65 schema:name dimensions_id
78 schema:value pub.1091242082
79 rdf:type schema:PropertyValue
80 N5247c4154f644ffebcf8e16fabfb8bd2 rdf:first sg:person.011227642201.24
81 rdf:rest N38e74cbe7a864bd9ac30a26c4a8c3cca
82 N61bb6399a87348c3a4c63eefe21c0ee9 rdf:first sg:person.012227703031.04
83 rdf:rest Nce684b6741bb4900b12f6c3e87d9189f
84 N9e878e0eb45b423fbb6b31ae3f0f3d41 rdf:first sg:person.013105002112.72
85 rdf:rest N61bb6399a87348c3a4c63eefe21c0ee9
86 Nbcd119e87ef246f0927cd7c47048899a schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 Nc93d9857abd54ed5a1df3e630f9804af schema:name doi
89 schema:value 10.1007/s11368-017-1779-0
90 rdf:type schema:PropertyValue
91 Nce684b6741bb4900b12f6c3e87d9189f rdf:first sg:person.01371174506.87
92 rdf:rest rdf:nil
93 Ndd5ef73b0ae14a22a65b16b912721039 schema:name readcube_id
94 schema:value a5ca874b6bc1b96d5db5fa64061c62c613aae79039aef1f3a0853d77db25b975
95 rdf:type schema:PropertyValue
96 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
97 schema:name Environmental Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0503 schema:inDefinedTermSet anzsrc-for:
100 schema:name Soil Sciences
101 rdf:type schema:DefinedTerm
102 sg:journal.1034521 schema:issn 1439-0108
103 1614-7480
104 schema:name Journal of Soils and Sediments
105 rdf:type schema:Periodical
106 sg:person.01027467505.86 schema:affiliation https://www.grid.ac/institutes/grid.458443.a
107 schema:familyName Wu
108 schema:givenName Bingfang
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027467505.86
110 rdf:type schema:Person
111 sg:person.011227642201.24 schema:affiliation https://www.grid.ac/institutes/grid.411389.6
112 schema:familyName Wang
113 schema:givenName Qiang
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011227642201.24
115 rdf:type schema:Person
116 sg:person.012227703031.04 schema:affiliation https://www.grid.ac/institutes/grid.458443.a
117 schema:familyName Zhu
118 schema:givenName Liang
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012227703031.04
120 rdf:type schema:Person
121 sg:person.013105002112.72 schema:affiliation https://www.grid.ac/institutes/grid.466856.f
122 schema:familyName Stein
123 schema:givenName Alfred
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013105002112.72
125 rdf:type schema:Person
126 sg:person.01371174506.87 schema:affiliation https://www.grid.ac/institutes/grid.458443.a
127 schema:familyName Zeng
128 schema:givenName Yuan
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371174506.87
130 rdf:type schema:Person
131 sg:pub.10.1007/978-94-017-3048-8_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002367105
132 https://doi.org/10.1007/978-94-017-3048-8_23
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s11111-006-0027-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048264563
135 https://doi.org/10.1007/s11111-006-0027-0
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1002/hyp.3360050103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011361795
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1006/jare.2002.1073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053445778
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/0016-7061(91)90089-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1008766921
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/0016-7061(96)00024-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002221373
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/0098-3004(84)90020-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041496652
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/0269-7491(96)00031-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019711549
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/0304-3800(95)00161-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001191021
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/0341-8162(91)90051-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023247572
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.catena.2003.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017577287
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.catena.2009.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008082073
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.geoderma.2003.08.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015853278
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.geoderma.2006.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002522475
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.geoderma.2008.09.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014413506
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.geoderma.2009.05.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026910559
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.geoderma.2009.05.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033544678
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.geoderma.2010.03.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038786514
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.geomorph.2015.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016260055
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.rse.2008.09.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012652952
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/s0016-7061(03)00223-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006999004
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/s0016-7061(98)00137-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039699188
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/s0169-555x(98)00095-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010788253
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/s0378-3758(03)00111-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025647359
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/s1002-0160(10)60025-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006865459
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/s1464-1909(01)85012-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012490653
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1029/2000jb900253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000262944
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1029/2011jf002296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014758909
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1080/02693799508902047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027718260
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1080/136588199241382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001099893
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1109/91.413225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061247739
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1111/j.1365-2389.1990.tb00080.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038996749
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1191/0309133303pp366ra schema:sameAs https://app.dimensions.ai/details/publication/pub.1064151977
198 rdf:type schema:CreativeWork
199 https://doi.org/10.2136/sssaj1961.03615995002500050023x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069038459
200 rdf:type schema:CreativeWork
201 https://doi.org/10.2136/sssaj1989.03615995005300060026x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069046246
202 rdf:type schema:CreativeWork
203 https://doi.org/10.2136/sssaj1993.03615995005700020026x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069047305
204 rdf:type schema:CreativeWork
205 https://doi.org/10.2136/sssaj1997.03615995006100020022x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069048363
206 rdf:type schema:CreativeWork
207 https://doi.org/10.2136/sssaj1999.03615995006300010021x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069048783
208 rdf:type schema:CreativeWork
209 https://doi.org/10.2136/sssaj2000.6462046x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069049257
210 rdf:type schema:CreativeWork
211 https://doi.org/10.2136/sssaj2001.6551463x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069049493
212 rdf:type schema:CreativeWork
213 https://doi.org/10.2136/sssaj2003.0264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069049841
214 rdf:type schema:CreativeWork
215 https://doi.org/10.2136/sssaj2010.0002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069051788
216 rdf:type schema:CreativeWork
217 https://doi.org/10.2136/sssaspecpub33.c8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088347499
218 rdf:type schema:CreativeWork
219 https://doi.org/10.5194/hess-11-569-2007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016933661
220 rdf:type schema:CreativeWork
221 https://www.grid.ac/institutes/grid.411389.6 schema:alternateName Anhui Agricultural University
222 schema:name Schools of Resources and Environment, Anhui Agricultural University, 230036, Hefei, China
223 The Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 100094, Beijing, China
224 rdf:type schema:Organization
225 https://www.grid.ac/institutes/grid.458443.a schema:alternateName Institute of Remote Sensing and Digital Earth
226 schema:name The Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 100094, Beijing, China
227 rdf:type schema:Organization
228 https://www.grid.ac/institutes/grid.466856.f schema:alternateName International Institute for Geo-Information Science and Earth Observation
229 schema:name Faculty of Geo-Information Science and Earth Observation (ITC), 7500 AA, Enschede, The Netherlands
230 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...