Ontology type: schema:ScholarlyArticle Open Access: True
2020-07-07
AUTHORSSu Chern Foo, Ian J. Chapman, David M. Hartnell, Andrew D. Turner, Daniel J. Franklin
ABSTRACTThe application of hydrogen peroxide (H2O2) as a management tool to control Microcystis blooms has become increasingly popular due to its short lifetime and targeted action. H2O2 increases intracellular reactive oxygen species resulting in oxidative stress and subsequently cell death. H2O2 is naturally produced in freshwater bodies as a result of photocatalytic reactions between dissolved organic carbon and sunlight. Previously, some studies have suggested that this environmental source of H2O2 selectively targets for toxigenic cyanobacteria strains in the genus Microcystis. Also, past studies only focused on the morphological and biochemical changes of H2O2-induced cell death in Microcystis with little information available on the effects of different H2O2 concentrations on growth, esterase activity and membrane integrity. Therefore, this study investigated the effects of non-lethal (40–4000 nM) concentrations on percentage cell death; with a focus on sub-lethal (50 μM) and lethal (275 μM; 500 μM) doses of H2O2 on growth, cells showing esterase activity and membrane integrity. The non-lethal dose experiment was part of a preliminary study. Results showed a dose- and time-dependent relationship in all three Microcystis strains post H2O2 treatment. H2O2 resulted in a significant increase in intracellular reactive oxygen species, decreased chlorophyll a content, decreased growth rate and esterase activity. Interestingly, at sub-lethal (50 μM H2O2 treatment), percentage of dead cells in microcystin-producing strains was significantly higher (p < 0.05) than that in non-microcystin-producing strains at 72 h. These findings further cement our understanding of the influence of H2O2 on different strains of Microcystis and its impact on membrane integrity and metabolic physiology: important to future toxic bloom control programmes. More... »
PAGES38916-38927
http://scigraph.springernature.com/pub.10.1007/s11356-020-09729-6
DOIhttp://dx.doi.org/10.1007/s11356-020-09729-6
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1129070050
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/32638304
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Ecology",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Chlorophyll A",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Cyanobacteria",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Hydrogen Peroxide",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Microcystins",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Microcystis",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Oxidative Stress",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia",
"id": "http://www.grid.ac/institutes/grid.440425.3",
"name": [
"Department of Life & Environmental Sciences, Faculty of Science & Technology, Bournemouth University, Talbot Campus, Fern Barrow, BH12 5BB, Poole, Dorset, UK",
"School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia"
],
"type": "Organization"
},
"familyName": "Foo",
"givenName": "Su Chern",
"id": "sg:person.010566574551.14",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010566574551.14"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "New South Wales Shellfish Program, NSW Food Authority, 2430, Taree, NSW, Australia",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Department of Life & Environmental Sciences, Faculty of Science & Technology, Bournemouth University, Talbot Campus, Fern Barrow, BH12 5BB, Poole, Dorset, UK",
"New South Wales Shellfish Program, NSW Food Authority, 2430, Taree, NSW, Australia"
],
"type": "Organization"
},
"familyName": "Chapman",
"givenName": "Ian J.",
"id": "sg:person.0675431343.98",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675431343.98"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Centre for Environment, Fisheries and Aquaculture Science (CEFAS), The Nothe, Barrack Road, DT4 8UB, Weymouth, Dorset, UK",
"id": "http://www.grid.ac/institutes/grid.14332.37",
"name": [
"Department of Life & Environmental Sciences, Faculty of Science & Technology, Bournemouth University, Talbot Campus, Fern Barrow, BH12 5BB, Poole, Dorset, UK",
"Centre for Environment, Fisheries and Aquaculture Science (CEFAS), The Nothe, Barrack Road, DT4 8UB, Weymouth, Dorset, UK"
],
"type": "Organization"
},
"familyName": "Hartnell",
"givenName": "David M.",
"id": "sg:person.0711400763.00",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711400763.00"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Centre for Environment, Fisheries and Aquaculture Science (CEFAS), The Nothe, Barrack Road, DT4 8UB, Weymouth, Dorset, UK",
"id": "http://www.grid.ac/institutes/grid.14332.37",
"name": [
"Centre for Environment, Fisheries and Aquaculture Science (CEFAS), The Nothe, Barrack Road, DT4 8UB, Weymouth, Dorset, UK"
],
"type": "Organization"
},
"familyName": "Turner",
"givenName": "Andrew D.",
"id": "sg:person.01021433065.36",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021433065.36"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Life & Environmental Sciences, Faculty of Science & Technology, Bournemouth University, Talbot Campus, Fern Barrow, BH12 5BB, Poole, Dorset, UK",
"id": "http://www.grid.ac/institutes/grid.17236.31",
"name": [
"Department of Life & Environmental Sciences, Faculty of Science & Technology, Bournemouth University, Talbot Campus, Fern Barrow, BH12 5BB, Poole, Dorset, UK"
],
"type": "Organization"
},
"familyName": "Franklin",
"givenName": "Daniel J.",
"id": "sg:person.011640022535.77",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011640022535.77"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-1-60761-411-1_4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027677011",
"https://doi.org/10.1007/978-1-60761-411-1_4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41579-018-0040-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1105118518",
"https://doi.org/10.1038/s41579-018-0040-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11099-007-0062-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017621406",
"https://doi.org/10.1007/s11099-007-0062-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1039/b110365m",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035573775",
"https://doi.org/10.1039/b110365m"
],
"type": "CreativeWork"
}
],
"datePublished": "2020-07-07",
"datePublishedReg": "2020-07-07",
"description": "The application of hydrogen peroxide (H2O2) as a management tool to control Microcystis blooms has become increasingly popular due to its short lifetime and targeted action. H2O2 increases intracellular reactive oxygen species resulting in oxidative stress and subsequently cell death. H2O2 is naturally produced in freshwater bodies as a result of photocatalytic reactions between dissolved organic carbon and sunlight. Previously, some studies have suggested that this environmental source of H2O2 selectively targets for toxigenic cyanobacteria strains in the genus Microcystis. Also, past studies only focused on the morphological and biochemical changes of H2O2-induced cell death in Microcystis with little information available on the effects of different H2O2 concentrations on growth, esterase activity and membrane integrity. Therefore, this study investigated the effects of non-lethal (40\u20134000\u00a0nM) concentrations on percentage cell death; with a focus on sub-lethal (50\u00a0\u03bcM) and lethal (275\u00a0\u03bcM; 500\u00a0\u03bcM) doses of H2O2 on growth, cells showing esterase activity and membrane integrity. The non-lethal dose experiment was part of a preliminary study. Results showed a dose- and time-dependent relationship in all three Microcystis strains post H2O2 treatment. H2O2 resulted in a significant increase in intracellular reactive oxygen species, decreased chlorophyll a content, decreased growth rate and esterase activity. Interestingly, at sub-lethal (50\u00a0\u03bcM H2O2 treatment), percentage of dead cells in microcystin-producing strains was significantly higher (p\u2009<\u20090.05) than that in non-microcystin-producing strains at 72\u00a0h. These findings further cement our understanding of the influence of H2O2 on different strains of Microcystis and its impact on membrane integrity and metabolic physiology: important to future toxic bloom control programmes.",
"genre": "article",
"id": "sg:pub.10.1007/s11356-020-09729-6",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1113424",
"issn": [
"0944-1344",
"1614-7499"
],
"name": "Environmental Science and Pollution Research",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "31",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "27"
}
],
"keywords": [
"cell death",
"membrane integrity",
"reactive oxygen species",
"microcystin-producing strains",
"oxygen species",
"freshwater bodies",
"cyanobacteria strains",
"genus Microcystis",
"non-lethal concentrations",
"intracellular reactive oxygen species",
"Microcystis blooms",
"metabolic physiology",
"Microcystis aeruginosa",
"Microcystis",
"percentage cell death",
"dead cells",
"H2O2 treatment",
"metabolic activity",
"species",
"oxidative stress",
"different strains",
"esterase activity",
"biochemical changes",
"growth rate",
"environmental sources",
"hydrogen peroxide",
"strains",
"cells",
"growth",
"little information",
"integrity",
"H2O2",
"blooms",
"activity",
"physiology",
"organic carbon",
"lethal doses",
"time-dependent relationship",
"control programs",
"death",
"management tool",
"aeruginosa",
"target",
"stress",
"peroxide",
"understanding",
"study",
"significant increase",
"effect",
"concentration",
"past studies",
"carbon",
"action",
"changes",
"sunlight",
"body",
"content",
"results",
"experiments",
"findings",
"tool",
"increase",
"part",
"relationship",
"source",
"preliminary study",
"percentage",
"information",
"impact",
"treatment",
"rate",
"short lifetime",
"focus",
"reaction",
"influence",
"dose experiments",
"program",
"applications",
"doses",
"lifetime",
"dose",
"photocatalytic reaction"
],
"name": "Effects of H2O2 on growth, metabolic activity and membrane integrity in three strains of Microcystis aeruginosa",
"pagination": "38916-38927",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1129070050"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11356-020-09729-6"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"32638304"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11356-020-09729-6",
"https://app.dimensions.ai/details/publication/pub.1129070050"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:36",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_837.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s11356-020-09729-6"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11356-020-09729-6'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11356-020-09729-6'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11356-020-09729-6'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11356-020-09729-6'
This table displays all metadata directly associated to this object as RDF triples.
224 TRIPLES
22 PREDICATES
118 URIs
106 LITERALS
13 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s11356-020-09729-6 | schema:about | N0bddc5a47cd94c8ea6a1b262fac4fda5 |
2 | ″ | ″ | N0c41cf754a874403bfeedbd30f94c9d8 |
3 | ″ | ″ | N72ff556454b5443abdd31fccc60f732e |
4 | ″ | ″ | N771fef46cad5400b9881b377b0611efa |
5 | ″ | ″ | Nd2547f04a2af4e1aac4f534d8ffc04b4 |
6 | ″ | ″ | Nfb478886f4ad48b893aeb50393ad2596 |
7 | ″ | ″ | anzsrc-for:06 |
8 | ″ | ″ | anzsrc-for:0602 |
9 | ″ | schema:author | N672f4329e3aa4c43a3f80225106c5364 |
10 | ″ | schema:citation | sg:pub.10.1007/978-1-60761-411-1_4 |
11 | ″ | ″ | sg:pub.10.1007/s11099-007-0062-9 |
12 | ″ | ″ | sg:pub.10.1038/s41579-018-0040-1 |
13 | ″ | ″ | sg:pub.10.1039/b110365m |
14 | ″ | schema:datePublished | 2020-07-07 |
15 | ″ | schema:datePublishedReg | 2020-07-07 |
16 | ″ | schema:description | The application of hydrogen peroxide (H2O2) as a management tool to control Microcystis blooms has become increasingly popular due to its short lifetime and targeted action. H2O2 increases intracellular reactive oxygen species resulting in oxidative stress and subsequently cell death. H2O2 is naturally produced in freshwater bodies as a result of photocatalytic reactions between dissolved organic carbon and sunlight. Previously, some studies have suggested that this environmental source of H2O2 selectively targets for toxigenic cyanobacteria strains in the genus Microcystis. Also, past studies only focused on the morphological and biochemical changes of H2O2-induced cell death in Microcystis with little information available on the effects of different H2O2 concentrations on growth, esterase activity and membrane integrity. Therefore, this study investigated the effects of non-lethal (40–4000 nM) concentrations on percentage cell death; with a focus on sub-lethal (50 μM) and lethal (275 μM; 500 μM) doses of H2O2 on growth, cells showing esterase activity and membrane integrity. The non-lethal dose experiment was part of a preliminary study. Results showed a dose- and time-dependent relationship in all three Microcystis strains post H2O2 treatment. H2O2 resulted in a significant increase in intracellular reactive oxygen species, decreased chlorophyll a content, decreased growth rate and esterase activity. Interestingly, at sub-lethal (50 μM H2O2 treatment), percentage of dead cells in microcystin-producing strains was significantly higher (p < 0.05) than that in non-microcystin-producing strains at 72 h. These findings further cement our understanding of the influence of H2O2 on different strains of Microcystis and its impact on membrane integrity and metabolic physiology: important to future toxic bloom control programmes. |
17 | ″ | schema:genre | article |
18 | ″ | schema:inLanguage | en |
19 | ″ | schema:isAccessibleForFree | true |
20 | ″ | schema:isPartOf | N46ef49b5718a4678a369b1eb875b076b |
21 | ″ | ″ | N521fd912837b49caa3a8834462d21dc2 |
22 | ″ | ″ | sg:journal.1113424 |
23 | ″ | schema:keywords | H2O2 |
24 | ″ | ″ | H2O2 treatment |
25 | ″ | ″ | Microcystis |
26 | ″ | ″ | Microcystis aeruginosa |
27 | ″ | ″ | Microcystis blooms |
28 | ″ | ″ | action |
29 | ″ | ″ | activity |
30 | ″ | ″ | aeruginosa |
31 | ″ | ″ | applications |
32 | ″ | ″ | biochemical changes |
33 | ″ | ″ | blooms |
34 | ″ | ″ | body |
35 | ″ | ″ | carbon |
36 | ″ | ″ | cell death |
37 | ″ | ″ | cells |
38 | ″ | ″ | changes |
39 | ″ | ″ | concentration |
40 | ″ | ″ | content |
41 | ″ | ″ | control programs |
42 | ″ | ″ | cyanobacteria strains |
43 | ″ | ″ | dead cells |
44 | ″ | ″ | death |
45 | ″ | ″ | different strains |
46 | ″ | ″ | dose |
47 | ″ | ″ | dose experiments |
48 | ″ | ″ | doses |
49 | ″ | ″ | effect |
50 | ″ | ″ | environmental sources |
51 | ″ | ″ | esterase activity |
52 | ″ | ″ | experiments |
53 | ″ | ″ | findings |
54 | ″ | ″ | focus |
55 | ″ | ″ | freshwater bodies |
56 | ″ | ″ | genus Microcystis |
57 | ″ | ″ | growth |
58 | ″ | ″ | growth rate |
59 | ″ | ″ | hydrogen peroxide |
60 | ″ | ″ | impact |
61 | ″ | ″ | increase |
62 | ″ | ″ | influence |
63 | ″ | ″ | information |
64 | ″ | ″ | integrity |
65 | ″ | ″ | intracellular reactive oxygen species |
66 | ″ | ″ | lethal doses |
67 | ″ | ″ | lifetime |
68 | ″ | ″ | little information |
69 | ″ | ″ | management tool |
70 | ″ | ″ | membrane integrity |
71 | ″ | ″ | metabolic activity |
72 | ″ | ″ | metabolic physiology |
73 | ″ | ″ | microcystin-producing strains |
74 | ″ | ″ | non-lethal concentrations |
75 | ″ | ″ | organic carbon |
76 | ″ | ″ | oxidative stress |
77 | ″ | ″ | oxygen species |
78 | ″ | ″ | part |
79 | ″ | ″ | past studies |
80 | ″ | ″ | percentage |
81 | ″ | ″ | percentage cell death |
82 | ″ | ″ | peroxide |
83 | ″ | ″ | photocatalytic reaction |
84 | ″ | ″ | physiology |
85 | ″ | ″ | preliminary study |
86 | ″ | ″ | program |
87 | ″ | ″ | rate |
88 | ″ | ″ | reaction |
89 | ″ | ″ | reactive oxygen species |
90 | ″ | ″ | relationship |
91 | ″ | ″ | results |
92 | ″ | ″ | short lifetime |
93 | ″ | ″ | significant increase |
94 | ″ | ″ | source |
95 | ″ | ″ | species |
96 | ″ | ″ | strains |
97 | ″ | ″ | stress |
98 | ″ | ″ | study |
99 | ″ | ″ | sunlight |
100 | ″ | ″ | target |
101 | ″ | ″ | time-dependent relationship |
102 | ″ | ″ | tool |
103 | ″ | ″ | treatment |
104 | ″ | ″ | understanding |
105 | ″ | schema:name | Effects of H2O2 on growth, metabolic activity and membrane integrity in three strains of Microcystis aeruginosa |
106 | ″ | schema:pagination | 38916-38927 |
107 | ″ | schema:productId | N1b5b912fed2c472db0085af8608c7bb3 |
108 | ″ | ″ | N758de2db98f642fa8e580b0c757cd632 |
109 | ″ | ″ | N8b4e15a0da4e4916af2373265600cc29 |
110 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1129070050 |
111 | ″ | ″ | https://doi.org/10.1007/s11356-020-09729-6 |
112 | ″ | schema:sdDatePublished | 2022-05-20T07:36 |
113 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
114 | ″ | schema:sdPublisher | Nc38040b38b21437fb6f68a5395a164aa |
115 | ″ | schema:url | https://doi.org/10.1007/s11356-020-09729-6 |
116 | ″ | sgo:license | sg:explorer/license/ |
117 | ″ | sgo:sdDataset | articles |
118 | ″ | rdf:type | schema:ScholarlyArticle |
119 | N0bddc5a47cd94c8ea6a1b262fac4fda5 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
120 | ″ | schema:name | Oxidative Stress |
121 | ″ | rdf:type | schema:DefinedTerm |
122 | N0c41cf754a874403bfeedbd30f94c9d8 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
123 | ″ | schema:name | Microcystins |
124 | ″ | rdf:type | schema:DefinedTerm |
125 | N1b5b912fed2c472db0085af8608c7bb3 | schema:name | pubmed_id |
126 | ″ | schema:value | 32638304 |
127 | ″ | rdf:type | schema:PropertyValue |
128 | N46ef49b5718a4678a369b1eb875b076b | schema:issueNumber | 31 |
129 | ″ | rdf:type | schema:PublicationIssue |
130 | N521fd912837b49caa3a8834462d21dc2 | schema:volumeNumber | 27 |
131 | ″ | rdf:type | schema:PublicationVolume |
132 | N672f4329e3aa4c43a3f80225106c5364 | rdf:first | sg:person.010566574551.14 |
133 | ″ | rdf:rest | Nf2fc7c24542c4f93a95f8d6962eb11f0 |
134 | N6afc4f1bf71b4ccc938f73d5f58af527 | rdf:first | sg:person.011640022535.77 |
135 | ″ | rdf:rest | rdf:nil |
136 | N72ff556454b5443abdd31fccc60f732e | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
137 | ″ | schema:name | Hydrogen Peroxide |
138 | ″ | rdf:type | schema:DefinedTerm |
139 | N758de2db98f642fa8e580b0c757cd632 | schema:name | dimensions_id |
140 | ″ | schema:value | pub.1129070050 |
141 | ″ | rdf:type | schema:PropertyValue |
142 | N771fef46cad5400b9881b377b0611efa | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
143 | ″ | schema:name | Cyanobacteria |
144 | ″ | rdf:type | schema:DefinedTerm |
145 | N88cfb2a8e7dd448593c95687c7ac9bae | rdf:first | sg:person.01021433065.36 |
146 | ″ | rdf:rest | N6afc4f1bf71b4ccc938f73d5f58af527 |
147 | N8b4e15a0da4e4916af2373265600cc29 | schema:name | doi |
148 | ″ | schema:value | 10.1007/s11356-020-09729-6 |
149 | ″ | rdf:type | schema:PropertyValue |
150 | Naebf2d4cc00241e2bc0073a8f6763b59 | rdf:first | sg:person.0711400763.00 |
151 | ″ | rdf:rest | N88cfb2a8e7dd448593c95687c7ac9bae |
152 | Nc38040b38b21437fb6f68a5395a164aa | schema:name | Springer Nature - SN SciGraph project |
153 | ″ | rdf:type | schema:Organization |
154 | Nd2547f04a2af4e1aac4f534d8ffc04b4 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
155 | ″ | schema:name | Microcystis |
156 | ″ | rdf:type | schema:DefinedTerm |
157 | Nf2fc7c24542c4f93a95f8d6962eb11f0 | rdf:first | sg:person.0675431343.98 |
158 | ″ | rdf:rest | Naebf2d4cc00241e2bc0073a8f6763b59 |
159 | Nfb478886f4ad48b893aeb50393ad2596 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
160 | ″ | schema:name | Chlorophyll A |
161 | ″ | rdf:type | schema:DefinedTerm |
162 | anzsrc-for:06 | schema:inDefinedTermSet | anzsrc-for: |
163 | ″ | schema:name | Biological Sciences |
164 | ″ | rdf:type | schema:DefinedTerm |
165 | anzsrc-for:0602 | schema:inDefinedTermSet | anzsrc-for: |
166 | ″ | schema:name | Ecology |
167 | ″ | rdf:type | schema:DefinedTerm |
168 | sg:journal.1113424 | schema:issn | 0944-1344 |
169 | ″ | ″ | 1614-7499 |
170 | ″ | schema:name | Environmental Science and Pollution Research |
171 | ″ | schema:publisher | Springer Nature |
172 | ″ | rdf:type | schema:Periodical |
173 | sg:person.01021433065.36 | schema:affiliation | grid-institutes:grid.14332.37 |
174 | ″ | schema:familyName | Turner |
175 | ″ | schema:givenName | Andrew D. |
176 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021433065.36 |
177 | ″ | rdf:type | schema:Person |
178 | sg:person.010566574551.14 | schema:affiliation | grid-institutes:grid.440425.3 |
179 | ″ | schema:familyName | Foo |
180 | ″ | schema:givenName | Su Chern |
181 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010566574551.14 |
182 | ″ | rdf:type | schema:Person |
183 | sg:person.011640022535.77 | schema:affiliation | grid-institutes:grid.17236.31 |
184 | ″ | schema:familyName | Franklin |
185 | ″ | schema:givenName | Daniel J. |
186 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011640022535.77 |
187 | ″ | rdf:type | schema:Person |
188 | sg:person.0675431343.98 | schema:affiliation | grid-institutes:None |
189 | ″ | schema:familyName | Chapman |
190 | ″ | schema:givenName | Ian J. |
191 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675431343.98 |
192 | ″ | rdf:type | schema:Person |
193 | sg:person.0711400763.00 | schema:affiliation | grid-institutes:grid.14332.37 |
194 | ″ | schema:familyName | Hartnell |
195 | ″ | schema:givenName | David M. |
196 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711400763.00 |
197 | ″ | rdf:type | schema:Person |
198 | sg:pub.10.1007/978-1-60761-411-1_4 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1027677011 |
199 | ″ | ″ | https://doi.org/10.1007/978-1-60761-411-1_4 |
200 | ″ | rdf:type | schema:CreativeWork |
201 | sg:pub.10.1007/s11099-007-0062-9 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1017621406 |
202 | ″ | ″ | https://doi.org/10.1007/s11099-007-0062-9 |
203 | ″ | rdf:type | schema:CreativeWork |
204 | sg:pub.10.1038/s41579-018-0040-1 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1105118518 |
205 | ″ | ″ | https://doi.org/10.1038/s41579-018-0040-1 |
206 | ″ | rdf:type | schema:CreativeWork |
207 | sg:pub.10.1039/b110365m | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1035573775 |
208 | ″ | ″ | https://doi.org/10.1039/b110365m |
209 | ″ | rdf:type | schema:CreativeWork |
210 | grid-institutes:None | schema:alternateName | New South Wales Shellfish Program, NSW Food Authority, 2430, Taree, NSW, Australia |
211 | ″ | schema:name | Department of Life & Environmental Sciences, Faculty of Science & Technology, Bournemouth University, Talbot Campus, Fern Barrow, BH12 5BB, Poole, Dorset, UK |
212 | ″ | ″ | New South Wales Shellfish Program, NSW Food Authority, 2430, Taree, NSW, Australia |
213 | ″ | rdf:type | schema:Organization |
214 | grid-institutes:grid.14332.37 | schema:alternateName | Centre for Environment, Fisheries and Aquaculture Science (CEFAS), The Nothe, Barrack Road, DT4 8UB, Weymouth, Dorset, UK |
215 | ″ | schema:name | Centre for Environment, Fisheries and Aquaculture Science (CEFAS), The Nothe, Barrack Road, DT4 8UB, Weymouth, Dorset, UK |
216 | ″ | ″ | Department of Life & Environmental Sciences, Faculty of Science & Technology, Bournemouth University, Talbot Campus, Fern Barrow, BH12 5BB, Poole, Dorset, UK |
217 | ″ | rdf:type | schema:Organization |
218 | grid-institutes:grid.17236.31 | schema:alternateName | Department of Life & Environmental Sciences, Faculty of Science & Technology, Bournemouth University, Talbot Campus, Fern Barrow, BH12 5BB, Poole, Dorset, UK |
219 | ″ | schema:name | Department of Life & Environmental Sciences, Faculty of Science & Technology, Bournemouth University, Talbot Campus, Fern Barrow, BH12 5BB, Poole, Dorset, UK |
220 | ″ | rdf:type | schema:Organization |
221 | grid-institutes:grid.440425.3 | schema:alternateName | School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia |
222 | ″ | schema:name | Department of Life & Environmental Sciences, Faculty of Science & Technology, Bournemouth University, Talbot Campus, Fern Barrow, BH12 5BB, Poole, Dorset, UK |
223 | ″ | ″ | School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia |
224 | ″ | rdf:type | schema:Organization |