Three-dimensional batch electrochemical coagulation (ECC) of health care facility wastewater—clean water reclamation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-19

AUTHORS

Sujit Singh, Shivaswamy Mahesh, Mahesh Sahana

ABSTRACT

Three-dimensional (3D) batch ECC of raw health care facility wastewater (HCFWW) was adopted using stainless steel (SS) and aluminum (Al) scrap metal particle electrodes. ECC treatment was focused on priority quality parameters viz., chemical oxygen demand (COD), color, and other important water quality parameters. Sludge settling and filterability for post-ECC slurry were investigated after ECC. COD removals of 87.56 and 87.2% were achieved for current densities (CD) 83.33 and 125 A/m2 using SS-3D electrodes, and similarly, 86.99 and 86.23% COD removal for Al-3D electrodes. Simultaneously, color removals were 88.50 and 87.60% for CD 166.66 A/m2 (4A) using SS and Al-3D electrodes. Water quality parameters viz., nitrate, phosphates, and sulfate were also removed by 93.18%, 96.83%, and 41.07% for SS-3D electrodes, while Al-3D electrodes showed 93.15%, 96.72%, and 25.94% removal. Post-ECC slurry settling was good for all the applied CD using SS-3D electrodes generating dense and sturdy flocs. Al-3D electrodes showed excellent floc settling properties. SS-3D electrode flocs displayed good filterability at 1A with α: 2.497 × 1011 m kg-1 and Rm 1.946 × 1010 m-1. Post-ECC slurry using Al-3D electrodes were viscous causing delayed filterability giving α: 1.1760 × 1011 m kg-1 and Rm 1.504 × 109 m-1 for 3A. E. coli was destroyed by 97 and 98% for 2A and 3A respectively. Clear water reclamation of 85-90% and pollutants/contaminants removed within a short HRT of 75 min proved the effectiveness of adopting 3D-ECC for treating raw HCFWW. More... »

PAGES

1-15

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11356-019-04789-9

DOI

http://dx.doi.org/10.1007/s11356-019-04789-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112861082

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30888620


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Visvesvaraya Technological University", 
          "id": "https://www.grid.ac/institutes/grid.444321.4", 
          "name": [
            "Department of Environmental Engineering, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, 570006, Mysuru, Karnataka State, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Singh", 
        "givenName": "Sujit", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Visvesvaraya Technological University", 
          "id": "https://www.grid.ac/institutes/grid.444321.4", 
          "name": [
            "Department of Environmental Engineering, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, 570006, Mysuru, Karnataka State, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mahesh", 
        "givenName": "Shivaswamy", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Visvesvaraya Technological University", 
          "id": "https://www.grid.ac/institutes/grid.444321.4", 
          "name": [
            "Department of Environmental Engineering, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, 570006, Mysuru, Karnataka State, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sahana", 
        "givenName": "Mahesh", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.serj.2016.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003807847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cej.2013.08.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006166939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2010.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010931549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cej.2016.01.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011057862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cej.2016.01.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011057862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.desal.2011.03.083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011904487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11356-016-6389-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013021995", 
          "https://doi.org/10.1007/s11356-016-6389-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11356-016-6389-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013021995", 
          "https://doi.org/10.1007/s11356-016-6389-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cej.2013.05.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013579485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhazmat.2007.07.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018694955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemosphere.2009.10.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021797144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ep.12396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022589885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jelechem.2016.10.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022986608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jece.2016.02.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024301506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.wasman.2010.04.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026169743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhazmat.2004.08.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026716295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2013.04.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030368604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jenvman.2016.12.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030430238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.electacta.2010.08.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030546338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13201-015-0320-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032631846", 
          "https://doi.org/10.1007/s13201-015-0320-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jes.2016.03.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034513521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9517(83)90154-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035213355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6ew00322b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036438732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cherd.2016.11.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037918191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.seppur.2015.03.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039702468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jece.2015.04.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041230583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5ra27486a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041668338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.electacta.2010.10.073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041974132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jgar.2016.01.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043536087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.electacta.2010.02.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046848621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3894(01)00301-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046935661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3894(01)00301-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046935661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1001-0742(11)61081-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049177586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10934529.2016.1258870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053558233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie0603969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055600009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie0603969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055600009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/698_2017_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083915564", 
          "https://doi.org/10.1007/698_2017_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11356-017-8661-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084031114", 
          "https://doi.org/10.1007/s11356-017-8661-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11356-017-8661-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084031114", 
          "https://doi.org/10.1007/s11356-017-8661-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2017.02.118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084061956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cej.2017.03.077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084064370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jenvman.2017.03.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084087581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jenvman.2017.03.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084087611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/698_2017_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084679629", 
          "https://doi.org/10.1007/698_2017_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/698_2017_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084723541", 
          "https://doi.org/10.1007/698_2017_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/698_2017_23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085048914", 
          "https://doi.org/10.1007/698_2017_23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cej.2017.06.121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086120426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ep.12711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090940448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.seppur.2017.08.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091118001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2017.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092557172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-70548-4_43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099654795", 
          "https://doi.org/10.1007/978-3-319-70548-4_43"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-70548-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099660425", 
          "https://doi.org/10.1007/978-3-319-70548-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jece.2017.12.054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100090780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11783-018-1033-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100864452", 
          "https://doi.org/10.1007/s11783-018-1033-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jece.2018.02.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100979012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ultsonch.2018.04.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103422576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2166/wst.2018.297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105294350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.seppur.2018.07.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105928421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mex.2018.10.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107940891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mex.2018.10.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107940891"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-19", 
    "datePublishedReg": "2019-03-19", 
    "description": "Three-dimensional (3D) batch ECC of raw health care facility wastewater (HCFWW) was adopted using stainless steel (SS) and aluminum (Al) scrap metal particle electrodes. ECC treatment was focused on priority quality parameters viz., chemical oxygen demand (COD), color, and other important water quality parameters. Sludge settling and filterability for post-ECC slurry were investigated after ECC. COD removals of 87.56 and 87.2% were achieved for current densities (CD) 83.33 and 125\u00a0A/m2 using SS-3D electrodes, and similarly, 86.99 and 86.23% COD removal for Al-3D electrodes. Simultaneously, color removals were 88.50 and 87.60% for CD 166.66\u00a0A/m2 (4A) using SS and Al-3D electrodes. Water quality parameters viz., nitrate, phosphates, and sulfate were also removed by 93.18%, 96.83%, and 41.07% for SS-3D electrodes, while Al-3D electrodes showed 93.15%, 96.72%, and 25.94% removal. Post-ECC slurry settling was good for all the applied CD using SS-3D electrodes generating dense and sturdy flocs. Al-3D electrodes showed excellent floc settling properties. SS-3D electrode flocs displayed good filterability at 1A with \u03b1: 2.497\u2009\u00d7\u20091011\u00a0m\u00a0kg-1 and Rm 1.946\u2009\u00d7\u20091010\u00a0m-1. Post-ECC slurry using Al-3D electrodes were viscous causing delayed filterability giving \u03b1: 1.1760\u2009\u00d7\u20091011\u00a0m\u00a0kg-1 and Rm\u00a01.504\u2009\u00d7\u2009109\u00a0m-1 for 3A. E. coli was destroyed by 97 and 98% for 2A and 3A respectively. Clear water reclamation of 85-90% and pollutants/contaminants removed within a short HRT of 75\u00a0min proved the effectiveness of adopting 3D-ECC for treating raw HCFWW.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11356-019-04789-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1113424", 
        "issn": [
          "0944-1344", 
          "1614-7499"
        ], 
        "name": "Environmental Science and Pollution Research", 
        "type": "Periodical"
      }
    ], 
    "name": "Three-dimensional batch electrochemical coagulation (ECC) of health care facility wastewater\u2014clean water reclamation", 
    "pagination": "1-15", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "278066a2e0dd287605b61b6524214a14ae52646f0da766927389930a140cbba2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30888620"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9441769"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11356-019-04789-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112861082"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11356-019-04789-9", 
      "https://app.dimensions.ai/details/publication/pub.1112861082"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87115_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11356-019-04789-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11356-019-04789-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11356-019-04789-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11356-019-04789-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11356-019-04789-9'


 

This table displays all metadata directly associated to this object as RDF triples.

246 TRIPLES      21 PREDICATES      80 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11356-019-04789-9 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Ndd1d2f8741a4495381da695bd3223c8c
4 schema:citation sg:pub.10.1007/698_2017_10
5 sg:pub.10.1007/698_2017_13
6 sg:pub.10.1007/698_2017_23
7 sg:pub.10.1007/698_2017_5
8 sg:pub.10.1007/978-3-319-70548-4
9 sg:pub.10.1007/978-3-319-70548-4_43
10 sg:pub.10.1007/s11356-016-6389-7
11 sg:pub.10.1007/s11356-017-8661-x
12 sg:pub.10.1007/s11783-018-1033-z
13 sg:pub.10.1007/s13201-015-0320-0
14 https://doi.org/10.1002/ep.12396
15 https://doi.org/10.1002/ep.12711
16 https://doi.org/10.1016/0021-9517(83)90154-9
17 https://doi.org/10.1016/j.apenergy.2013.04.050
18 https://doi.org/10.1016/j.biortech.2017.02.118
19 https://doi.org/10.1016/j.biortech.2017.11.004
20 https://doi.org/10.1016/j.cej.2013.05.033
21 https://doi.org/10.1016/j.cej.2013.08.007
22 https://doi.org/10.1016/j.cej.2016.01.027
23 https://doi.org/10.1016/j.cej.2017.03.077
24 https://doi.org/10.1016/j.cej.2017.06.121
25 https://doi.org/10.1016/j.chemosphere.2009.10.034
26 https://doi.org/10.1016/j.cherd.2016.11.011
27 https://doi.org/10.1016/j.desal.2011.03.083
28 https://doi.org/10.1016/j.electacta.2010.02.019
29 https://doi.org/10.1016/j.electacta.2010.08.011
30 https://doi.org/10.1016/j.electacta.2010.10.073
31 https://doi.org/10.1016/j.jece.2015.04.014
32 https://doi.org/10.1016/j.jece.2016.02.017
33 https://doi.org/10.1016/j.jece.2017.12.054
34 https://doi.org/10.1016/j.jece.2018.02.007
35 https://doi.org/10.1016/j.jelechem.2016.10.036
36 https://doi.org/10.1016/j.jenvman.2016.12.035
37 https://doi.org/10.1016/j.jenvman.2017.03.017
38 https://doi.org/10.1016/j.jenvman.2017.03.048
39 https://doi.org/10.1016/j.jes.2016.03.020
40 https://doi.org/10.1016/j.jgar.2016.01.008
41 https://doi.org/10.1016/j.jhazmat.2004.08.032
42 https://doi.org/10.1016/j.jhazmat.2007.07.023
43 https://doi.org/10.1016/j.jhydrol.2010.06.005
44 https://doi.org/10.1016/j.mex.2018.10.024
45 https://doi.org/10.1016/j.seppur.2015.03.043
46 https://doi.org/10.1016/j.seppur.2017.08.010
47 https://doi.org/10.1016/j.seppur.2018.07.056
48 https://doi.org/10.1016/j.serj.2016.09.002
49 https://doi.org/10.1016/j.ultsonch.2018.04.009
50 https://doi.org/10.1016/j.wasman.2010.04.029
51 https://doi.org/10.1016/s0304-3894(01)00301-6
52 https://doi.org/10.1016/s1001-0742(11)61081-4
53 https://doi.org/10.1021/ie0603969
54 https://doi.org/10.1039/c5ra27486a
55 https://doi.org/10.1039/c6ew00322b
56 https://doi.org/10.1080/10934529.2016.1258870
57 https://doi.org/10.2166/wst.2018.297
58 schema:datePublished 2019-03-19
59 schema:datePublishedReg 2019-03-19
60 schema:description Three-dimensional (3D) batch ECC of raw health care facility wastewater (HCFWW) was adopted using stainless steel (SS) and aluminum (Al) scrap metal particle electrodes. ECC treatment was focused on priority quality parameters viz., chemical oxygen demand (COD), color, and other important water quality parameters. Sludge settling and filterability for post-ECC slurry were investigated after ECC. COD removals of 87.56 and 87.2% were achieved for current densities (CD) 83.33 and 125 A/m<sup>2</sup> using SS-3D electrodes, and similarly, 86.99 and 86.23% COD removal for Al-3D electrodes. Simultaneously, color removals were 88.50 and 87.60% for CD 166.66 A/m<sup>2</sup> (4A) using SS and Al-3D electrodes. Water quality parameters viz., nitrate, phosphates, and sulfate were also removed by 93.18%, 96.83%, and 41.07% for SS-3D electrodes, while Al-3D electrodes showed 93.15%, 96.72%, and 25.94% removal. Post-ECC slurry settling was good for all the applied CD using SS-3D electrodes generating dense and sturdy flocs. Al-3D electrodes showed excellent floc settling properties. SS-3D electrode flocs displayed good filterability at 1A with α: 2.497 × 10<sup>11</sup> m kg<sup>-1</sup> and R<sub>m</sub> 1.946 × 10<sup>10</sup> m<sup>-1</sup>. Post-ECC slurry using Al-3D electrodes were viscous causing delayed filterability giving α: 1.1760 × 10<sup>11</sup> m kg<sup>-1</sup> and R<sub>m</sub> 1.504 × 10<sup>9</sup> m<sup>-1</sup> for 3A. E. coli was destroyed by 97 and 98% for 2A and 3A respectively. Clear water reclamation of 85-90% and pollutants/contaminants removed within a short HRT of 75 min proved the effectiveness of adopting 3D-ECC for treating raw HCFWW.
61 schema:genre research_article
62 schema:inLanguage en
63 schema:isAccessibleForFree false
64 schema:isPartOf sg:journal.1113424
65 schema:name Three-dimensional batch electrochemical coagulation (ECC) of health care facility wastewater—clean water reclamation
66 schema:pagination 1-15
67 schema:productId N0adc47bb02a244d5a5e3dd8e523b184f
68 N2282701ccd1d4441b0b0d6e0fd4e716d
69 N292db5228d9e460bbff2b0dfa399231d
70 N7d23c8ded2344ea19b7a0d5cd54acefd
71 Na7fa290f7caa4271b51a1929f3b2cda6
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112861082
73 https://doi.org/10.1007/s11356-019-04789-9
74 schema:sdDatePublished 2019-04-11T12:27
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher N4bd0bf6af29c410dae84e7767f7ad7e9
77 schema:url https://link.springer.com/10.1007%2Fs11356-019-04789-9
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N0adc47bb02a244d5a5e3dd8e523b184f schema:name nlm_unique_id
82 schema:value 9441769
83 rdf:type schema:PropertyValue
84 N2282701ccd1d4441b0b0d6e0fd4e716d schema:name doi
85 schema:value 10.1007/s11356-019-04789-9
86 rdf:type schema:PropertyValue
87 N292db5228d9e460bbff2b0dfa399231d schema:name readcube_id
88 schema:value 278066a2e0dd287605b61b6524214a14ae52646f0da766927389930a140cbba2
89 rdf:type schema:PropertyValue
90 N4bd0bf6af29c410dae84e7767f7ad7e9 schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 N5b7a2164fd5d4a8daf3885c18e0be93b schema:affiliation https://www.grid.ac/institutes/grid.444321.4
93 schema:familyName Singh
94 schema:givenName Sujit
95 rdf:type schema:Person
96 N76b90e86f56449e582c9dde32a20adf8 schema:affiliation https://www.grid.ac/institutes/grid.444321.4
97 schema:familyName Mahesh
98 schema:givenName Shivaswamy
99 rdf:type schema:Person
100 N7d23c8ded2344ea19b7a0d5cd54acefd schema:name pubmed_id
101 schema:value 30888620
102 rdf:type schema:PropertyValue
103 N9b283781a547450ba594129f575e9e84 rdf:first N76b90e86f56449e582c9dde32a20adf8
104 rdf:rest Nc0cbd03e2ca347e1b0d34cf7b43fb6db
105 Na7fa290f7caa4271b51a1929f3b2cda6 schema:name dimensions_id
106 schema:value pub.1112861082
107 rdf:type schema:PropertyValue
108 Nc0cbd03e2ca347e1b0d34cf7b43fb6db rdf:first Ne1b8871efbdc45e19cbcdeed4e9338a8
109 rdf:rest rdf:nil
110 Ndd1d2f8741a4495381da695bd3223c8c rdf:first N5b7a2164fd5d4a8daf3885c18e0be93b
111 rdf:rest N9b283781a547450ba594129f575e9e84
112 Ne1b8871efbdc45e19cbcdeed4e9338a8 schema:affiliation https://www.grid.ac/institutes/grid.444321.4
113 schema:familyName Sahana
114 schema:givenName Mahesh
115 rdf:type schema:Person
116 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
117 schema:name Chemical Sciences
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
120 schema:name Physical Chemistry (incl. Structural)
121 rdf:type schema:DefinedTerm
122 sg:journal.1113424 schema:issn 0944-1344
123 1614-7499
124 schema:name Environmental Science and Pollution Research
125 rdf:type schema:Periodical
126 sg:pub.10.1007/698_2017_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084679629
127 https://doi.org/10.1007/698_2017_10
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/698_2017_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084723541
130 https://doi.org/10.1007/698_2017_13
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/698_2017_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085048914
133 https://doi.org/10.1007/698_2017_23
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/698_2017_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083915564
136 https://doi.org/10.1007/698_2017_5
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/978-3-319-70548-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099660425
139 https://doi.org/10.1007/978-3-319-70548-4
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/978-3-319-70548-4_43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099654795
142 https://doi.org/10.1007/978-3-319-70548-4_43
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s11356-016-6389-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013021995
145 https://doi.org/10.1007/s11356-016-6389-7
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s11356-017-8661-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1084031114
148 https://doi.org/10.1007/s11356-017-8661-x
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s11783-018-1033-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1100864452
151 https://doi.org/10.1007/s11783-018-1033-z
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s13201-015-0320-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032631846
154 https://doi.org/10.1007/s13201-015-0320-0
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1002/ep.12396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022589885
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1002/ep.12711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090940448
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/0021-9517(83)90154-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035213355
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.apenergy.2013.04.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030368604
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.biortech.2017.02.118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084061956
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.biortech.2017.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092557172
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.cej.2013.05.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013579485
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.cej.2013.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006166939
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.cej.2016.01.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011057862
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.cej.2017.03.077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084064370
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.cej.2017.06.121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086120426
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.chemosphere.2009.10.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021797144
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.cherd.2016.11.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037918191
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.desal.2011.03.083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011904487
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.electacta.2010.02.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046848621
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.electacta.2010.08.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030546338
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.electacta.2010.10.073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041974132
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.jece.2015.04.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041230583
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.jece.2016.02.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024301506
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.jece.2017.12.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100090780
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.jece.2018.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100979012
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.jelechem.2016.10.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022986608
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.jenvman.2016.12.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030430238
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.jenvman.2017.03.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084087581
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.jenvman.2017.03.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084087611
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.jes.2016.03.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034513521
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/j.jgar.2016.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043536087
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/j.jhazmat.2004.08.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026716295
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/j.jhazmat.2007.07.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018694955
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/j.jhydrol.2010.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010931549
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/j.mex.2018.10.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107940891
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/j.seppur.2015.03.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039702468
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/j.seppur.2017.08.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091118001
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/j.seppur.2018.07.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105928421
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/j.serj.2016.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003807847
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/j.ultsonch.2018.04.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103422576
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/j.wasman.2010.04.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026169743
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/s0304-3894(01)00301-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046935661
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1016/s1001-0742(11)61081-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049177586
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1021/ie0603969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055600009
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1039/c5ra27486a schema:sameAs https://app.dimensions.ai/details/publication/pub.1041668338
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1039/c6ew00322b schema:sameAs https://app.dimensions.ai/details/publication/pub.1036438732
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1080/10934529.2016.1258870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053558233
241 rdf:type schema:CreativeWork
242 https://doi.org/10.2166/wst.2018.297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105294350
243 rdf:type schema:CreativeWork
244 https://www.grid.ac/institutes/grid.444321.4 schema:alternateName Visvesvaraya Technological University
245 schema:name Department of Environmental Engineering, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, 570006, Mysuru, Karnataka State, India
246 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...