Use of biogas solid residue from anaerobic digestion as an effective amendment to remediate Cr(VI)-contaminated soils View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-20

AUTHORS

Zilin Song, Linchuan Fang, Jie Wang, Chao Zhang

ABSTRACT

Chromium (Cr) is one of the most common metal pollutants and has thus attracted considerable attention. In this study, we investigated the potential use of biogas solid residue (BSR) from anaerobic digestion as an effective amendment to decrease the bioavailability of Cr in Cr(VI)-polluted soil using pot experiments. Compared to the no-addition treatment, the addition of BSR (treatments-50, 100, and 150 g kg-1 soil) increased the soil nutrient levels, microbial diversity and activities, and decreased the redox potential (Eh). BSR treatment of Cr(VI)-contaminated soil caused a reduction in soil Cr(VI) concentration (16.6-52.1%) and the exchangeable Cr proportion (15.2-52.4%), thereby decreasing the available Cr for uptake by plants. BSR treatments resulted in a reduction in the Cr contents of the roots and aboveground biomass of pakchoi plants. The Cr(VI) content in treated soils decreased with increasing BSR addition, with 150 g kg-1 being the most efficient application. The relative abundance of Cr-reducing groups, such as Pseudomonas, Microbacterium, and Bacillus, increased with the increase in BSR application. The enhancement of soil Cr(VI) immobilization by the addition of the BSR was mostly attributed to the simultaneous effect of organic matter addition, stimulation of microorganisms, and reduced Eh value. Organic matter contributed more to the variation in Cr. The presence of BSR decreased the bioavailability of Cr in the soil and, therefore, lowered the potential mobilization of Cr(VI) from the soils. Our results demonstrated that BSR application may offer a potentially promising solution for enhancing agricultural production in Cr-contaminated soils. More... »

PAGES

1-13

References to SciGraph publications

  • 2003-02. Chromium in the environment: factors affecting biological remediation in PLANT AND SOIL
  • 2016-03. Concentration of Cu, Zn, Cr, Ni, Cd, and Pb in soil, sugarcane leaf and juice: residual effect of sewage sludge and organic compost application in ENVIRONMENTAL MONITORING AND ASSESSMENT
  • 2013-07. Wood ash effects on chemical and microbiological properties of digestate- and manure-amended soils in BIOLOGY AND FERTILITY OF SOILS
  • 2003. Chromium-Microorganism Interactions in Soils: Remediation Implications in REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY
  • 2015-03. Impact of systematic change of redox potential on the leaching of Ba, Cr, Sr, and V from a riverine soil into water in JOURNAL OF SOILS AND SEDIMENTS
  • 2017-11. Different genotypes of Silene vulgaris (Moench) Garcke grown on chromium-contaminated soils influence root organic acid composition and rhizosphere bacterial communities in ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
  • 2018-03. Remediation of Cr(VI)-contaminated soil with co-composting of three different biomass solid wastes in JOURNAL OF SOILS AND SEDIMENTS
  • 2017-06. Deciphering biodegradable chelant-enhanced phytoremediation through microbes and nitrogen transformation in contaminated soils in ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
  • 1994-01. Heavy metal binding by hydrophobic and hydrophilic dissolved organic carbon fractions in a Spodosol A and B horizon in WATER, AIR, & SOIL POLLUTION
  • 2017-04. The Effects of Biochar and Intercropping on the Cd, Cr and Zn Speciation in Soils and Plant Uptake by Machilus pauhoi in BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY
  • 2016-12. Influence of Metal-Resistant Rhizobacteria on the Growth of Helianthus annuus L. in Cr(VI)-Contaminated Soil in WATER, AIR, & SOIL POLLUTION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11356-019-04786-y

    DOI

    http://dx.doi.org/10.1007/s11356-019-04786-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112898425

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30895546


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0503", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Soil Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Environmental Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "North West Agriculture and Forestry University", 
              "id": "https://www.grid.ac/institutes/grid.144022.1", 
              "name": [
                "College of Natural Resources and Environment, Northwest A&F University, 712100, Yangling, People\u2019s Republic of China", 
                "State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, 712100, Yangling, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Song", 
            "givenName": "Zilin", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Soil and Water Conservation", 
              "id": "https://www.grid.ac/institutes/grid.458510.d", 
              "name": [
                "State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, 712100, Yangling, People\u2019s Republic of China", 
                "Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, 712100, Yangling, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fang", 
            "givenName": "Linchuan", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Soil and Water Conservation", 
              "id": "https://www.grid.ac/institutes/grid.458510.d", 
              "name": [
                "State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, 712100, Yangling, People\u2019s Republic of China", 
                "Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, 712100, Yangling, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Jie", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Soil and Water Conservation", 
              "id": "https://www.grid.ac/institutes/grid.458510.d", 
              "name": [
                "State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, 712100, Yangling, People\u2019s Republic of China", 
                "Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, 712100, Yangling, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Chao", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.gexplo.2016.10.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001735788"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.wasman.2007.06.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006493030"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biortech.2015.03.028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006852711"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.geoderma.2010.12.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009104437"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jhazmat.2006.08.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009159404"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11356-016-6667-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010776358", 
              "https://doi.org/10.1007/s11356-016-6667-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11356-016-6667-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010776358", 
              "https://doi.org/10.1007/s11356-016-6667-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10661-016-5170-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011974561", 
              "https://doi.org/10.1007/s10661-016-5170-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btr381", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013175803"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00374-012-0747-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014625701", 
              "https://doi.org/10.1007/s00374-012-0747-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.wasman.2006.12.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015572486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0269-7491(01)00172-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016216968"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.chemosphere.2008.04.056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019238997"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1000080107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019627885"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/15320383.2016.1169500", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021408690"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.chemosphere.2015.01.048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022579639"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jhazmat.2013.01.048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023491218"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ibiod.2013.10.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024241016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0038-0717(87)90052-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025649998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0038-0717(87)90052-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025649998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biombioe.2012.06.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027424327"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biombioe.2012.02.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028075872"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1022504826342", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028508305", 
              "https://doi.org/10.1023/a:1022504826342"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/0-387-21728-2_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029747567", 
              "https://doi.org/10.1007/0-387-21728-2_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jhazmat.2012.04.054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032955413"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1001-0742(12)60078-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033735173"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11270-016-3174-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040226481", 
              "https://doi.org/10.1007/s11270-016-3174-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11270-016-3174-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040226481", 
              "https://doi.org/10.1007/s11270-016-3174-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1574-6968.1992.tb14040.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043120300"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1574-6968.1992.tb14040.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043120300"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jenvman.2016.08.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044113821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11368-014-1036-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044127731", 
              "https://doi.org/10.1007/s11368-014-1036-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aem.67.3.1076-1084.2001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045140822"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1001-0742(12)60197-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045466049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.soilbio.2015.02.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046225059"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4236/as.2012.31014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047410129"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01257119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047628389", 
              "https://doi.org/10.1007/bf01257119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01257119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047628389", 
              "https://doi.org/10.1007/bf01257119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/03650340.2016.1152358", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048917490"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00128-016-2013-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049654783", 
              "https://doi.org/10.1007/s00128-016-2013-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00128-016-2013-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049654783", 
              "https://doi.org/10.1007/s00128-016-2013-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac50043a017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055010914"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2134/jeq2003.1200", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069008112"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1081526491", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.chemosphere.2017.03.074", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084065436"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.chemosphere.2017.03.074", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084065436"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11356-017-9029-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085078751", 
              "https://doi.org/10.1007/s11356-017-9029-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11356-017-9029-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085078751", 
              "https://doi.org/10.1007/s11356-017-9029-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ecoenv.2017.06.043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086077981"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11368-017-1811-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091308801", 
              "https://doi.org/10.1007/s11368-017-1811-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ecoenv.2018.03.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101519150"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.soilbio.2018.05.026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104395251"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03-20", 
        "datePublishedReg": "2019-03-20", 
        "description": "Chromium (Cr) is one of the most common metal pollutants and has thus attracted considerable attention. In this study, we investigated the potential use of biogas solid residue (BSR) from anaerobic digestion as an effective amendment to decrease the bioavailability of Cr in Cr(VI)-polluted soil using pot experiments. Compared to the no-addition treatment, the addition of BSR (treatments-50, 100, and 150\u00a0g\u00a0kg-1 soil) increased the soil nutrient levels, microbial diversity and activities, and decreased the redox potential (Eh). BSR treatment of Cr(VI)-contaminated soil caused a reduction in soil Cr(VI) concentration (16.6-52.1%) and the exchangeable Cr proportion (15.2-52.4%), thereby decreasing the available Cr for uptake by plants. BSR treatments resulted in a reduction in the Cr contents of the roots and aboveground biomass of pakchoi plants. The Cr(VI) content in treated soils decreased with increasing BSR addition, with 150\u00a0g\u00a0kg-1 being the most efficient application. The relative abundance of Cr-reducing groups, such as Pseudomonas, Microbacterium, and Bacillus, increased with the increase in BSR application. The enhancement of soil Cr(VI) immobilization by the addition of the BSR was mostly attributed to the simultaneous effect of organic matter addition, stimulation of microorganisms, and reduced Eh value. Organic matter contributed more to the variation in Cr. The presence of BSR decreased the bioavailability of Cr in the soil and, therefore, lowered the potential mobilization of Cr(VI) from the soils. Our results demonstrated that BSR application may offer a potentially promising solution for enhancing agricultural production in Cr-contaminated soils.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11356-019-04786-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1113424", 
            "issn": [
              "0944-1344", 
              "1614-7499"
            ], 
            "name": "Environmental Science and Pollution Research", 
            "type": "Periodical"
          }
        ], 
        "name": "Use of biogas solid residue from anaerobic digestion as an effective amendment to remediate Cr(VI)-contaminated soils", 
        "pagination": "1-13", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "6b8faf87b7dec2cf13837a50ecad4456c820b3ab8771dcd517e1bb19a1d2bdc1"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30895546"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9441769"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11356-019-04786-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112898425"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11356-019-04786-y", 
          "https://app.dimensions.ai/details/publication/pub.1112898425"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:40", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70046_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs11356-019-04786-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11356-019-04786-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11356-019-04786-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11356-019-04786-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11356-019-04786-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    227 TRIPLES      21 PREDICATES      70 URIs      18 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11356-019-04786-y schema:about anzsrc-for:05
    2 anzsrc-for:0503
    3 schema:author N42479ee0dd7f485c964a67af1126a8fe
    4 schema:citation sg:pub.10.1007/0-387-21728-2_4
    5 sg:pub.10.1007/bf01257119
    6 sg:pub.10.1007/s00128-016-2013-2
    7 sg:pub.10.1007/s00374-012-0747-5
    8 sg:pub.10.1007/s10661-016-5170-1
    9 sg:pub.10.1007/s11270-016-3174-7
    10 sg:pub.10.1007/s11356-016-6667-4
    11 sg:pub.10.1007/s11356-017-9029-y
    12 sg:pub.10.1007/s11368-014-1036-8
    13 sg:pub.10.1007/s11368-017-1811-4
    14 sg:pub.10.1023/a:1022504826342
    15 https://app.dimensions.ai/details/publication/pub.1081526491
    16 https://doi.org/10.1016/0038-0717(87)90052-6
    17 https://doi.org/10.1016/j.biombioe.2012.02.018
    18 https://doi.org/10.1016/j.biombioe.2012.06.014
    19 https://doi.org/10.1016/j.biortech.2015.03.028
    20 https://doi.org/10.1016/j.chemosphere.2008.04.056
    21 https://doi.org/10.1016/j.chemosphere.2015.01.048
    22 https://doi.org/10.1016/j.chemosphere.2017.03.074
    23 https://doi.org/10.1016/j.ecoenv.2017.06.043
    24 https://doi.org/10.1016/j.ecoenv.2018.03.015
    25 https://doi.org/10.1016/j.geoderma.2010.12.003
    26 https://doi.org/10.1016/j.gexplo.2016.10.014
    27 https://doi.org/10.1016/j.ibiod.2013.10.017
    28 https://doi.org/10.1016/j.jenvman.2016.08.020
    29 https://doi.org/10.1016/j.jhazmat.2006.08.003
    30 https://doi.org/10.1016/j.jhazmat.2012.04.054
    31 https://doi.org/10.1016/j.jhazmat.2013.01.048
    32 https://doi.org/10.1016/j.soilbio.2015.02.006
    33 https://doi.org/10.1016/j.soilbio.2018.05.026
    34 https://doi.org/10.1016/j.wasman.2006.12.012
    35 https://doi.org/10.1016/j.wasman.2007.06.005
    36 https://doi.org/10.1016/s0269-7491(01)00172-5
    37 https://doi.org/10.1016/s1001-0742(12)60078-3
    38 https://doi.org/10.1016/s1001-0742(12)60197-1
    39 https://doi.org/10.1021/ac50043a017
    40 https://doi.org/10.1073/pnas.1000080107
    41 https://doi.org/10.1080/03650340.2016.1152358
    42 https://doi.org/10.1080/15320383.2016.1169500
    43 https://doi.org/10.1093/bioinformatics/btr381
    44 https://doi.org/10.1111/j.1574-6968.1992.tb14040.x
    45 https://doi.org/10.1128/aem.67.3.1076-1084.2001
    46 https://doi.org/10.2134/jeq2003.1200
    47 https://doi.org/10.4236/as.2012.31014
    48 schema:datePublished 2019-03-20
    49 schema:datePublishedReg 2019-03-20
    50 schema:description Chromium (Cr) is one of the most common metal pollutants and has thus attracted considerable attention. In this study, we investigated the potential use of biogas solid residue (BSR) from anaerobic digestion as an effective amendment to decrease the bioavailability of Cr in Cr(VI)-polluted soil using pot experiments. Compared to the no-addition treatment, the addition of BSR (treatments-50, 100, and 150 g kg<sup>-1</sup> soil) increased the soil nutrient levels, microbial diversity and activities, and decreased the redox potential (Eh). BSR treatment of Cr(VI)-contaminated soil caused a reduction in soil Cr(VI) concentration (16.6-52.1%) and the exchangeable Cr proportion (15.2-52.4%), thereby decreasing the available Cr for uptake by plants. BSR treatments resulted in a reduction in the Cr contents of the roots and aboveground biomass of pakchoi plants. The Cr(VI) content in treated soils decreased with increasing BSR addition, with 150 g kg<sup>-1</sup> being the most efficient application. The relative abundance of Cr-reducing groups, such as Pseudomonas, Microbacterium, and Bacillus, increased with the increase in BSR application. The enhancement of soil Cr(VI) immobilization by the addition of the BSR was mostly attributed to the simultaneous effect of organic matter addition, stimulation of microorganisms, and reduced Eh value. Organic matter contributed more to the variation in Cr. The presence of BSR decreased the bioavailability of Cr in the soil and, therefore, lowered the potential mobilization of Cr(VI) from the soils. Our results demonstrated that BSR application may offer a potentially promising solution for enhancing agricultural production in Cr-contaminated soils.
    51 schema:genre research_article
    52 schema:inLanguage en
    53 schema:isAccessibleForFree false
    54 schema:isPartOf sg:journal.1113424
    55 schema:name Use of biogas solid residue from anaerobic digestion as an effective amendment to remediate Cr(VI)-contaminated soils
    56 schema:pagination 1-13
    57 schema:productId N08cccff294a348dbae84f44bbc6959ef
    58 N4bbf7dcc68d8487a9e56b191ef4d0506
    59 N6456c7b932e3453284f9eb3dc6af6afd
    60 N860ecdae435e401d847cb60af2fd2687
    61 N99c6e4f908e747f8af864380171dac3c
    62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112898425
    63 https://doi.org/10.1007/s11356-019-04786-y
    64 schema:sdDatePublished 2019-04-11T12:40
    65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    66 schema:sdPublisher N74010cf397984371be73784d9c69152f
    67 schema:url https://link.springer.com/10.1007%2Fs11356-019-04786-y
    68 sgo:license sg:explorer/license/
    69 sgo:sdDataset articles
    70 rdf:type schema:ScholarlyArticle
    71 N08cccff294a348dbae84f44bbc6959ef schema:name pubmed_id
    72 schema:value 30895546
    73 rdf:type schema:PropertyValue
    74 N0ada3dc31b8640bf898d590502956ec9 rdf:first N405e7c08c9804a7fb0f3d47dc99eda1c
    75 rdf:rest N9b8929243f034111b55b5cde0f659a5f
    76 N405e7c08c9804a7fb0f3d47dc99eda1c schema:affiliation https://www.grid.ac/institutes/grid.458510.d
    77 schema:familyName Wang
    78 schema:givenName Jie
    79 rdf:type schema:Person
    80 N42479ee0dd7f485c964a67af1126a8fe rdf:first Nba904bfb80394ca181b99e0bb50746f5
    81 rdf:rest Nae0568e3bc2b434ab6186ddb985b726e
    82 N4bbf7dcc68d8487a9e56b191ef4d0506 schema:name dimensions_id
    83 schema:value pub.1112898425
    84 rdf:type schema:PropertyValue
    85 N6456c7b932e3453284f9eb3dc6af6afd schema:name nlm_unique_id
    86 schema:value 9441769
    87 rdf:type schema:PropertyValue
    88 N74010cf397984371be73784d9c69152f schema:name Springer Nature - SN SciGraph project
    89 rdf:type schema:Organization
    90 N860ecdae435e401d847cb60af2fd2687 schema:name readcube_id
    91 schema:value 6b8faf87b7dec2cf13837a50ecad4456c820b3ab8771dcd517e1bb19a1d2bdc1
    92 rdf:type schema:PropertyValue
    93 N99c6e4f908e747f8af864380171dac3c schema:name doi
    94 schema:value 10.1007/s11356-019-04786-y
    95 rdf:type schema:PropertyValue
    96 N9b8929243f034111b55b5cde0f659a5f rdf:first Nf95a7719231140859f752877e4c3229a
    97 rdf:rest rdf:nil
    98 Nae0568e3bc2b434ab6186ddb985b726e rdf:first Nc8b0932bfb2840149ece92cdad02f7ba
    99 rdf:rest N0ada3dc31b8640bf898d590502956ec9
    100 Nba904bfb80394ca181b99e0bb50746f5 schema:affiliation https://www.grid.ac/institutes/grid.144022.1
    101 schema:familyName Song
    102 schema:givenName Zilin
    103 rdf:type schema:Person
    104 Nc8b0932bfb2840149ece92cdad02f7ba schema:affiliation https://www.grid.ac/institutes/grid.458510.d
    105 schema:familyName Fang
    106 schema:givenName Linchuan
    107 rdf:type schema:Person
    108 Nf95a7719231140859f752877e4c3229a schema:affiliation https://www.grid.ac/institutes/grid.458510.d
    109 schema:familyName Zhang
    110 schema:givenName Chao
    111 rdf:type schema:Person
    112 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
    113 schema:name Environmental Sciences
    114 rdf:type schema:DefinedTerm
    115 anzsrc-for:0503 schema:inDefinedTermSet anzsrc-for:
    116 schema:name Soil Sciences
    117 rdf:type schema:DefinedTerm
    118 sg:journal.1113424 schema:issn 0944-1344
    119 1614-7499
    120 schema:name Environmental Science and Pollution Research
    121 rdf:type schema:Periodical
    122 sg:pub.10.1007/0-387-21728-2_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029747567
    123 https://doi.org/10.1007/0-387-21728-2_4
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/bf01257119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047628389
    126 https://doi.org/10.1007/bf01257119
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/s00128-016-2013-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049654783
    129 https://doi.org/10.1007/s00128-016-2013-2
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/s00374-012-0747-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014625701
    132 https://doi.org/10.1007/s00374-012-0747-5
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/s10661-016-5170-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011974561
    135 https://doi.org/10.1007/s10661-016-5170-1
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/s11270-016-3174-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040226481
    138 https://doi.org/10.1007/s11270-016-3174-7
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/s11356-016-6667-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010776358
    141 https://doi.org/10.1007/s11356-016-6667-4
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/s11356-017-9029-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1085078751
    144 https://doi.org/10.1007/s11356-017-9029-y
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/s11368-014-1036-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044127731
    147 https://doi.org/10.1007/s11368-014-1036-8
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/s11368-017-1811-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091308801
    150 https://doi.org/10.1007/s11368-017-1811-4
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1023/a:1022504826342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028508305
    153 https://doi.org/10.1023/a:1022504826342
    154 rdf:type schema:CreativeWork
    155 https://app.dimensions.ai/details/publication/pub.1081526491 schema:CreativeWork
    156 https://doi.org/10.1016/0038-0717(87)90052-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025649998
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1016/j.biombioe.2012.02.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028075872
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1016/j.biombioe.2012.06.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027424327
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1016/j.biortech.2015.03.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006852711
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1016/j.chemosphere.2008.04.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019238997
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1016/j.chemosphere.2015.01.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022579639
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1016/j.chemosphere.2017.03.074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084065436
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1016/j.ecoenv.2017.06.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086077981
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1016/j.ecoenv.2018.03.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101519150
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1016/j.geoderma.2010.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009104437
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1016/j.gexplo.2016.10.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001735788
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1016/j.ibiod.2013.10.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024241016
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1016/j.jenvman.2016.08.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044113821
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1016/j.jhazmat.2006.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009159404
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1016/j.jhazmat.2012.04.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032955413
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1016/j.jhazmat.2013.01.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023491218
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1016/j.soilbio.2015.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046225059
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1016/j.soilbio.2018.05.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104395251
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1016/j.wasman.2006.12.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015572486
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1016/j.wasman.2007.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006493030
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1016/s0269-7491(01)00172-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016216968
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1016/s1001-0742(12)60078-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033735173
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1016/s1001-0742(12)60197-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045466049
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1021/ac50043a017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055010914
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1073/pnas.1000080107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019627885
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1080/03650340.2016.1152358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048917490
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1080/15320383.2016.1169500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021408690
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1093/bioinformatics/btr381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013175803
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1111/j.1574-6968.1992.tb14040.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043120300
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1128/aem.67.3.1076-1084.2001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045140822
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.2134/jeq2003.1200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069008112
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.4236/as.2012.31014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047410129
    219 rdf:type schema:CreativeWork
    220 https://www.grid.ac/institutes/grid.144022.1 schema:alternateName North West Agriculture and Forestry University
    221 schema:name College of Natural Resources and Environment, Northwest A&F University, 712100, Yangling, People’s Republic of China
    222 State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, 712100, Yangling, People’s Republic of China
    223 rdf:type schema:Organization
    224 https://www.grid.ac/institutes/grid.458510.d schema:alternateName Institute of Soil and Water Conservation
    225 schema:name Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, 712100, Yangling, People’s Republic of China
    226 State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, 712100, Yangling, People’s Republic of China
    227 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...