Uptake of copper from acid mine drainage by the microalgae Nannochloropsis oculata View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Maria del Rosario Martínez-Macias, Ma. A. Correa-Murrieta, Yedidia Villegas-Peralta, Germán Eduardo Dévora-Isiordia, Jesús Álvarez-Sánchez, Jorge Saldivar-Cabrales, Reyna G. Sánchez-Duarte

ABSTRACT

The removal of heavy metals from acid mine drainage is a key factor for avoiding damage to the environment. The microalga Nannochloropsis oculata was cultured in an algal medium with 0.05, 0.1, 0.15, 0.2, and 0.25 mM copper under completely defined conditions to assess its removal capacity; the effects of copper on the cell density and lipid productivity of N. oculata were also evaluated. The results showed that N. oculata was able to remove up to 99.92 ± 0.04% of the copper content in the culture medium. A total of 89.29 ± 1.92% was eliminated through metabolism, and 10.70 ± 1.92% was removed by adsorption. These findings are favorable because they indicate that a large amount of copper was extracted due to the ability of the microalga to metabolize copper ions. The cell density, growth rate, and lipid content decreased with increased concentrations of copper in the culture medium. A positive effect on the fatty acid profile was found, as the saturated fatty acid (SFA) and monounsaturated fatty acid (MUFA) content improved when the copper concentration was higher than 0.1 mmol L-1, which can potentiate the production of high-quality biodiesel. N. oculata is a good option for the treatment of acid mine drainage due to its ability to eliminate a substantial percentage of the copper present. Moreover, combining different culture systems such that heavy metals are removed to non-toxic levels in the first stage and high cell densities, which promote lipid production, is obtained in the second stage would be an advantageous strategy. More... »

PAGES

6311-6318

References to SciGraph publications

  • 2010-09. Nutritional Quality of Edible Parts of Moringa oleifera in FOOD ANALYTICAL METHODS
  • 1997-04. Determination of biomass dry weight of marine microalgae in JOURNAL OF APPLIED PHYCOLOGY
  • 2014-12. Potential and properties of marine microalgae Nannochloropsis oculata as biomass fuel feedstock in INTERNATIONAL JOURNAL OF ENERGY AND ENVIRONMENTAL ENGINEERING
  • 1998-01. Effect of copper on cellular processes in higher plants in PHOTOSYNTHETICA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11356-018-3963-1

    DOI

    http://dx.doi.org/10.1007/s11356-018-3963-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111248030

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30617876


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0907", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Environmental Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Sonora Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.466844.c", 
              "name": [
                "Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnol\u00f3gico de Sonora, 5 de Febrero 818 Sur, 85000, Ciudad Obreg\u00f3n, Sonora, M\u00e9xico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mart\u00ednez-Macias", 
            "givenName": "Maria del Rosario", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sonora Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.466844.c", 
              "name": [
                "Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnol\u00f3gico de Sonora, 5 de Febrero 818 Sur, 85000, Ciudad Obreg\u00f3n, Sonora, M\u00e9xico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Correa-Murrieta", 
            "givenName": "Ma. A.", 
            "id": "sg:person.0675462715.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675462715.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sonora Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.466844.c", 
              "name": [
                "Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnol\u00f3gico de Sonora, 5 de Febrero 818 Sur, 85000, Ciudad Obreg\u00f3n, Sonora, M\u00e9xico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Villegas-Peralta", 
            "givenName": "Yedidia", 
            "id": "sg:person.07477340743.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07477340743.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sonora Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.466844.c", 
              "name": [
                "Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnol\u00f3gico de Sonora, 5 de Febrero 818 Sur, 85000, Ciudad Obreg\u00f3n, Sonora, M\u00e9xico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "D\u00e9vora-Isiordia", 
            "givenName": "Germ\u00e1n Eduardo", 
            "id": "sg:person.015615203033.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015615203033.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sonora Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.466844.c", 
              "name": [
                "Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnol\u00f3gico de Sonora, 5 de Febrero 818 Sur, 85000, Ciudad Obreg\u00f3n, Sonora, M\u00e9xico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "\u00c1lvarez-S\u00e1nchez", 
            "givenName": "Jes\u00fas", 
            "id": "sg:person.013774416777.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013774416777.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sonora Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.466844.c", 
              "name": [
                "Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnol\u00f3gico de Sonora, 5 de Febrero 818 Sur, 85000, Ciudad Obreg\u00f3n, Sonora, M\u00e9xico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Saldivar-Cabrales", 
            "givenName": "Jorge", 
            "id": "sg:person.014504016026.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014504016026.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sonora Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.466844.c", 
              "name": [
                "Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnol\u00f3gico de Sonora, 5 de Febrero 818 Sur, 85000, Ciudad Obreg\u00f3n, Sonora, M\u00e9xico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "S\u00e1nchez-Duarte", 
            "givenName": "Reyna G.", 
            "id": "sg:person.01304640415.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304640415.26"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.biortech.2014.10.124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000219882"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40095-014-0138-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003730339", 
              "https://doi.org/10.1007/s40095-014-0138-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40095-014-0138-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003730339", 
              "https://doi.org/10.1007/s40095-014-0138-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1006818815528", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004256550", 
              "https://doi.org/10.1023/a:1006818815528"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/btpr.575", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005622243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1007914806640", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014677537", 
              "https://doi.org/10.1023/a:1007914806640"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0032-9592(99)00005-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016573444"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12161-009-9106-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017180706", 
              "https://doi.org/10.1007/s12161-009-9106-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12161-009-9106-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017180706", 
              "https://doi.org/10.1007/s12161-009-9106-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1149/1.2407386", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017245798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biortech.2006.09.026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018128001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0044-8486(84)90101-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021553196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0044-8486(84)90101-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021553196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.progpolymsci.2011.06.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023938145"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jenvman.2016.06.059", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027041797"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.watres.2008.11.046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028062887"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.plantsci.2005.09.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029478605"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.plantsci.2005.09.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029478605"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0375-6742(03)00183-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031929460"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0375-6742(03)00183-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031929460"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-313x.2008.03492.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034214799"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nbt.2009.06.630", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036154701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1263/jbb.100.593", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039443000"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/ec.00183-14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044994150"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-3040.1991.tb00949.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046398766"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bit.22033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048369118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ecolmodel.2012.07.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049188334"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/pce.12706", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053536928"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/sc400289z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056295772"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1104/pp.107.4.1293", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060840695"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1075727656", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jctb.5405", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091088815"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biortech.2017.11.086", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093121901"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biortech.2017.11.086", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093121901"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biortech.2017.11.086", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093121901"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03", 
        "datePublishedReg": "2019-03-01", 
        "description": "The removal of heavy metals from acid mine drainage is a key factor for avoiding damage to the environment. The microalga Nannochloropsis oculata was cultured in an algal medium with 0.05, 0.1, 0.15, 0.2, and 0.25\u00a0mM copper under completely defined conditions to assess its removal capacity; the effects of copper on the cell density and lipid productivity of N. oculata were also evaluated. The results showed that N. oculata was able to remove up to 99.92\u2009\u00b1\u20090.04% of the copper content in the culture medium. A total of 89.29\u2009\u00b1\u20091.92% was eliminated through metabolism, and 10.70\u2009\u00b1\u20091.92% was removed by adsorption. These findings are favorable because they indicate that a large amount of copper was extracted due to the ability of the microalga to metabolize copper ions. The cell density, growth rate, and lipid content decreased with increased concentrations of copper in the culture medium. A positive effect on the fatty acid profile was found, as the saturated fatty acid (SFA) and monounsaturated fatty acid (MUFA) content improved when the copper concentration was higher than 0.1\u00a0mmol\u00a0L-1, which can potentiate the production of high-quality biodiesel. N. oculata is a good option for the treatment of acid mine drainage due to its ability to eliminate a substantial percentage of the copper present. Moreover, combining different culture systems such that heavy metals are removed to non-toxic levels in the first stage and high cell densities, which promote lipid production, is obtained in the second stage would be an advantageous strategy.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11356-018-3963-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1113424", 
            "issn": [
              "0944-1344", 
              "1614-7499"
            ], 
            "name": "Environmental Science and Pollution Research", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "26"
          }
        ], 
        "name": "Uptake of copper from acid mine drainage by the microalgae Nannochloropsis oculata", 
        "pagination": "6311-6318", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "71902425f20b56f570eb5640ec7502a47adb3c1c56a8aa59efda7a04cbd08184"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30617876"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9441769"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11356-018-3963-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111248030"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11356-018-3963-1", 
          "https://app.dimensions.ai/details/publication/pub.1111248030"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:21", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78974_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs11356-018-3963-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11356-018-3963-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11356-018-3963-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11356-018-3963-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11356-018-3963-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    197 TRIPLES      21 PREDICATES      57 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11356-018-3963-1 schema:about anzsrc-for:09
    2 anzsrc-for:0907
    3 schema:author N404a6f2f921f4805b39952bf76db4f09
    4 schema:citation sg:pub.10.1007/s12161-009-9106-z
    5 sg:pub.10.1007/s40095-014-0138-9
    6 sg:pub.10.1023/a:1006818815528
    7 sg:pub.10.1023/a:1007914806640
    8 https://app.dimensions.ai/details/publication/pub.1075727656
    9 https://doi.org/10.1002/bit.22033
    10 https://doi.org/10.1002/btpr.575
    11 https://doi.org/10.1002/jctb.5405
    12 https://doi.org/10.1016/0044-8486(84)90101-7
    13 https://doi.org/10.1016/j.biortech.2006.09.026
    14 https://doi.org/10.1016/j.biortech.2014.10.124
    15 https://doi.org/10.1016/j.biortech.2017.11.086
    16 https://doi.org/10.1016/j.ecolmodel.2012.07.004
    17 https://doi.org/10.1016/j.jenvman.2016.06.059
    18 https://doi.org/10.1016/j.nbt.2009.06.630
    19 https://doi.org/10.1016/j.plantsci.2005.09.017
    20 https://doi.org/10.1016/j.progpolymsci.2011.06.003
    21 https://doi.org/10.1016/j.watres.2008.11.046
    22 https://doi.org/10.1016/s0032-9592(99)00005-9
    23 https://doi.org/10.1016/s0375-6742(03)00183-3
    24 https://doi.org/10.1021/sc400289z
    25 https://doi.org/10.1104/pp.107.4.1293
    26 https://doi.org/10.1111/j.1365-3040.1991.tb00949.x
    27 https://doi.org/10.1111/j.1365-313x.2008.03492.x
    28 https://doi.org/10.1111/pce.12706
    29 https://doi.org/10.1128/ec.00183-14
    30 https://doi.org/10.1149/1.2407386
    31 https://doi.org/10.1263/jbb.100.593
    32 schema:datePublished 2019-03
    33 schema:datePublishedReg 2019-03-01
    34 schema:description The removal of heavy metals from acid mine drainage is a key factor for avoiding damage to the environment. The microalga Nannochloropsis oculata was cultured in an algal medium with 0.05, 0.1, 0.15, 0.2, and 0.25 mM copper under completely defined conditions to assess its removal capacity; the effects of copper on the cell density and lipid productivity of N. oculata were also evaluated. The results showed that N. oculata was able to remove up to 99.92 ± 0.04% of the copper content in the culture medium. A total of 89.29 ± 1.92% was eliminated through metabolism, and 10.70 ± 1.92% was removed by adsorption. These findings are favorable because they indicate that a large amount of copper was extracted due to the ability of the microalga to metabolize copper ions. The cell density, growth rate, and lipid content decreased with increased concentrations of copper in the culture medium. A positive effect on the fatty acid profile was found, as the saturated fatty acid (SFA) and monounsaturated fatty acid (MUFA) content improved when the copper concentration was higher than 0.1 mmol L<sup>-1</sup>, which can potentiate the production of high-quality biodiesel. N. oculata is a good option for the treatment of acid mine drainage due to its ability to eliminate a substantial percentage of the copper present. Moreover, combining different culture systems such that heavy metals are removed to non-toxic levels in the first stage and high cell densities, which promote lipid production, is obtained in the second stage would be an advantageous strategy.
    35 schema:genre research_article
    36 schema:inLanguage en
    37 schema:isAccessibleForFree false
    38 schema:isPartOf N5b2f3a4f86054bf3831a899c6dc2b8c8
    39 Nc03a2682587e44708ba30aeb44c1ec78
    40 sg:journal.1113424
    41 schema:name Uptake of copper from acid mine drainage by the microalgae Nannochloropsis oculata
    42 schema:pagination 6311-6318
    43 schema:productId N5315369047e14355b5172aad5aaa3cd8
    44 N559780045aa24686b354682927c07487
    45 N86e1a0cd08c0408cb8bf48d14e6d52e6
    46 Ne093e4757a374262922ae7966dea8c71
    47 Nf624dc4c61ce4017b9d3b92c09945518
    48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111248030
    49 https://doi.org/10.1007/s11356-018-3963-1
    50 schema:sdDatePublished 2019-04-11T13:21
    51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    52 schema:sdPublisher N2cb02e72a7184a409d652336bbbfe80d
    53 schema:url https://link.springer.com/10.1007%2Fs11356-018-3963-1
    54 sgo:license sg:explorer/license/
    55 sgo:sdDataset articles
    56 rdf:type schema:ScholarlyArticle
    57 N1b59a502f35f48688327442305121c7a schema:affiliation https://www.grid.ac/institutes/grid.466844.c
    58 schema:familyName Martínez-Macias
    59 schema:givenName Maria del Rosario
    60 rdf:type schema:Person
    61 N2cb02e72a7184a409d652336bbbfe80d schema:name Springer Nature - SN SciGraph project
    62 rdf:type schema:Organization
    63 N404a6f2f921f4805b39952bf76db4f09 rdf:first N1b59a502f35f48688327442305121c7a
    64 rdf:rest Nf5a6ff77aa614bcbb834e8da24af71ce
    65 N5315369047e14355b5172aad5aaa3cd8 schema:name readcube_id
    66 schema:value 71902425f20b56f570eb5640ec7502a47adb3c1c56a8aa59efda7a04cbd08184
    67 rdf:type schema:PropertyValue
    68 N559780045aa24686b354682927c07487 schema:name doi
    69 schema:value 10.1007/s11356-018-3963-1
    70 rdf:type schema:PropertyValue
    71 N5b2f3a4f86054bf3831a899c6dc2b8c8 schema:issueNumber 7
    72 rdf:type schema:PublicationIssue
    73 N76737aac49ad446c8a58eead4a104a17 rdf:first sg:person.014504016026.05
    74 rdf:rest Nad68b4efd343498ea85bf77dee818f81
    75 N86e1a0cd08c0408cb8bf48d14e6d52e6 schema:name pubmed_id
    76 schema:value 30617876
    77 rdf:type schema:PropertyValue
    78 N9bd5727f2ad8471f83a775943887e1b1 rdf:first sg:person.015615203033.48
    79 rdf:rest Nc494462aad264ca0b298ffd0f6cd1a2f
    80 Na2390b0faff44547ba635c2d6e536616 rdf:first sg:person.07477340743.53
    81 rdf:rest N9bd5727f2ad8471f83a775943887e1b1
    82 Nad68b4efd343498ea85bf77dee818f81 rdf:first sg:person.01304640415.26
    83 rdf:rest rdf:nil
    84 Nc03a2682587e44708ba30aeb44c1ec78 schema:volumeNumber 26
    85 rdf:type schema:PublicationVolume
    86 Nc494462aad264ca0b298ffd0f6cd1a2f rdf:first sg:person.013774416777.35
    87 rdf:rest N76737aac49ad446c8a58eead4a104a17
    88 Ne093e4757a374262922ae7966dea8c71 schema:name dimensions_id
    89 schema:value pub.1111248030
    90 rdf:type schema:PropertyValue
    91 Nf5a6ff77aa614bcbb834e8da24af71ce rdf:first sg:person.0675462715.51
    92 rdf:rest Na2390b0faff44547ba635c2d6e536616
    93 Nf624dc4c61ce4017b9d3b92c09945518 schema:name nlm_unique_id
    94 schema:value 9441769
    95 rdf:type schema:PropertyValue
    96 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    97 schema:name Engineering
    98 rdf:type schema:DefinedTerm
    99 anzsrc-for:0907 schema:inDefinedTermSet anzsrc-for:
    100 schema:name Environmental Engineering
    101 rdf:type schema:DefinedTerm
    102 sg:journal.1113424 schema:issn 0944-1344
    103 1614-7499
    104 schema:name Environmental Science and Pollution Research
    105 rdf:type schema:Periodical
    106 sg:person.01304640415.26 schema:affiliation https://www.grid.ac/institutes/grid.466844.c
    107 schema:familyName Sánchez-Duarte
    108 schema:givenName Reyna G.
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304640415.26
    110 rdf:type schema:Person
    111 sg:person.013774416777.35 schema:affiliation https://www.grid.ac/institutes/grid.466844.c
    112 schema:familyName Álvarez-Sánchez
    113 schema:givenName Jesús
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013774416777.35
    115 rdf:type schema:Person
    116 sg:person.014504016026.05 schema:affiliation https://www.grid.ac/institutes/grid.466844.c
    117 schema:familyName Saldivar-Cabrales
    118 schema:givenName Jorge
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014504016026.05
    120 rdf:type schema:Person
    121 sg:person.015615203033.48 schema:affiliation https://www.grid.ac/institutes/grid.466844.c
    122 schema:familyName Dévora-Isiordia
    123 schema:givenName Germán Eduardo
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015615203033.48
    125 rdf:type schema:Person
    126 sg:person.0675462715.51 schema:affiliation https://www.grid.ac/institutes/grid.466844.c
    127 schema:familyName Correa-Murrieta
    128 schema:givenName Ma. A.
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675462715.51
    130 rdf:type schema:Person
    131 sg:person.07477340743.53 schema:affiliation https://www.grid.ac/institutes/grid.466844.c
    132 schema:familyName Villegas-Peralta
    133 schema:givenName Yedidia
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07477340743.53
    135 rdf:type schema:Person
    136 sg:pub.10.1007/s12161-009-9106-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1017180706
    137 https://doi.org/10.1007/s12161-009-9106-z
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/s40095-014-0138-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003730339
    140 https://doi.org/10.1007/s40095-014-0138-9
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1023/a:1006818815528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004256550
    143 https://doi.org/10.1023/a:1006818815528
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1023/a:1007914806640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014677537
    146 https://doi.org/10.1023/a:1007914806640
    147 rdf:type schema:CreativeWork
    148 https://app.dimensions.ai/details/publication/pub.1075727656 schema:CreativeWork
    149 https://doi.org/10.1002/bit.22033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048369118
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1002/btpr.575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005622243
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1002/jctb.5405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091088815
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1016/0044-8486(84)90101-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021553196
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1016/j.biortech.2006.09.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018128001
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1016/j.biortech.2014.10.124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000219882
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1016/j.biortech.2017.11.086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093121901
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1016/j.ecolmodel.2012.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049188334
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1016/j.jenvman.2016.06.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027041797
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1016/j.nbt.2009.06.630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036154701
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1016/j.plantsci.2005.09.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029478605
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1016/j.progpolymsci.2011.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023938145
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1016/j.watres.2008.11.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028062887
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1016/s0032-9592(99)00005-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016573444
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1016/s0375-6742(03)00183-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031929460
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1021/sc400289z schema:sameAs https://app.dimensions.ai/details/publication/pub.1056295772
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1104/pp.107.4.1293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060840695
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1111/j.1365-3040.1991.tb00949.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046398766
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1111/j.1365-313x.2008.03492.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034214799
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1111/pce.12706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053536928
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1128/ec.00183-14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044994150
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1149/1.2407386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017245798
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1263/jbb.100.593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039443000
    194 rdf:type schema:CreativeWork
    195 https://www.grid.ac/institutes/grid.466844.c schema:alternateName Sonora Institute of Technology
    196 schema:name Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, 85000, Ciudad Obregón, Sonora, México
    197 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...