Contamination characteristics and potential environmental implications of heavy metals in road dusts in typical industrial and agricultural cities, southeastern Hubei ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

Da-Mao Xu, Jia-Quan Zhang, Bo Yan, Hao Liu, Li-Li Zhang, Chang-Lin Zhan, Li Zhang, Ping Zhong

ABSTRACT

In November 2013, the total concentration of selected heavy metals in 43 urban dust samples, collected from two small-sized cities of industrial E'zhou and agricultural Huanggang, located in the southeastern Hubei province, central China, was detected quantitatively by flame atomic absorption spectrometric (FAAS) for ultimate purpose of pollution monitoring and risk evaluation. Results indicated that the mean concentrations exceeding their respective background values were observed for all the investigated metals, with the exception of Co (13.08mg kg-1) and Fe (38635.02mg kg-1) in Huanggang road dusts, whose average concentrations were close to the background levels. In comparison with the reference data reported from the selected cities worldwide, the urban road dusts were seriously polluted by heavy metals to diverse degrees. The contour distribution maps implied that obviously higher values zones were found between two different types of urban areas, located to both sides of the coastline of Yangtze River. Multivariate statistical analysis revealed that the enriched heavy metals had emanated from the combined effects of both natural sources and anthropogenic sources. Three pollution indices indicated that the riskiest element mainly comprising Cr, Ni, Cu, and Pb appeared to be the major contributors to the urban environmental pollution. Avoiding continuous damage requires, the riskiest metallic contaminants should be paid preferential attention to. More... »

PAGES

36223-36238

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11356-018-3282-6

DOI

http://dx.doi.org/10.1007/s11356-018-3282-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107849217

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30362041


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geochemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Agriculture", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "China", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cities", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dust", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Environmental Monitoring", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Environmental Pollution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Industry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metals, Heavy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multivariate Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Assessment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Soil Pollutants", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spectrophotometry, Atomic", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, 435003, Huangshi, People\u2019s Republic of China", 
            "State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640, Guangzhou, People\u2019s Republic of China", 
            "University of Chinese Academy of Sciences, 100082, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Da-Mao", 
        "id": "sg:person.011451520237.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011451520237.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hubei Polytechnic University", 
          "id": "https://www.grid.ac/institutes/grid.410651.7", 
          "name": [
            "Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, 435003, Huangshi, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Jia-Quan", 
        "id": "sg:person.01222560023.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222560023.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Guangzhou Institute of Geochemistry", 
          "id": "https://www.grid.ac/institutes/grid.454798.3", 
          "name": [
            "State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640, Guangzhou, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Bo", 
        "id": "sg:person.01216014700.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216014700.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hubei Polytechnic University", 
          "id": "https://www.grid.ac/institutes/grid.410651.7", 
          "name": [
            "Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, 435003, Huangshi, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Hao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hubei Polytechnic University", 
          "id": "https://www.grid.ac/institutes/grid.410651.7", 
          "name": [
            "Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, 435003, Huangshi, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Li-Li", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hubei Polytechnic University", 
          "id": "https://www.grid.ac/institutes/grid.410651.7", 
          "name": [
            "Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, 435003, Huangshi, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhan", 
        "givenName": "Chang-Lin", 
        "id": "sg:person.0772103023.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772103023.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hubei Polytechnic University", 
          "id": "https://www.grid.ac/institutes/grid.410651.7", 
          "name": [
            "Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, 435003, Huangshi, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Li", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wuhan University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.412787.f", 
          "name": [
            "Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, 435003, Huangshi, People\u2019s Republic of China", 
            "College of Resources and Environmental Engineering, Wuhan University of Science and Technology, 430081, Wuhan, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhong", 
        "givenName": "Ping", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jhazmat.2012.12.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001182487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11356-016-7934-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002727966", 
          "https://doi.org/10.1007/s11356-016-7934-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11356-016-7934-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002727966", 
          "https://doi.org/10.1007/s11356-016-7934-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11356-016-7200-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008442462", 
          "https://doi.org/10.1007/s11356-016-7200-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11356-016-7200-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008442462", 
          "https://doi.org/10.1007/s11356-016-7200-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10653-016-9836-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010824452", 
          "https://doi.org/10.1007/s10653-016-9836-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecoenv.2014.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016862271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2014.01.054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017963310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecoenv.2015.06.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018751465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecoenv.2016.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020648008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gexplo.2016.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023281847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gexplo.2016.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023281847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecoenv.2014.04.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026394716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002540050473", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027730886", 
          "https://doi.org/10.1007/s002540050473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-821x(79)90049-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031484139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-821x(79)90049-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031484139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2016.02.101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031794273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0043-1354(80)90143-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032993455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0043-1354(80)90143-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032993455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2015.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033000512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecoenv.2016.10.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034052803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecoenv.2016.02.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035374546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envpol.2011.01.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035567719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhazmat.2009.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037574044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemosphere.2016.11.088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039307693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecoenv.2015.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039738710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envpol.2013.07.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042543423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envpol.2012.12.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043200442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhazmat.2008.04.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046030079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12665-014-3578-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046585970", 
          "https://doi.org/10.1007/s12665-014-3578-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es00002a024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055483836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2017.05.180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085573379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemosphere.2017.06.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086328210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2017.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091055063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2017.08.123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091413914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11356-017-0052-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091517594", 
          "https://doi.org/10.1007/s11356-017-0052-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geoderma.2017.09.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091862676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gexplo.2017.09.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091973674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2017.11.144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092828466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2017.11.177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092977494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2018.05.059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103963400"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "In November 2013, the total concentration of selected heavy metals in 43 urban dust samples, collected from two small-sized cities of industrial E'zhou and agricultural Huanggang, located in the southeastern Hubei province, central China, was detected quantitatively by flame atomic absorption spectrometric (FAAS) for ultimate purpose of pollution monitoring and risk evaluation. Results indicated that the mean concentrations exceeding their respective background values were observed for all the investigated metals, with the exception of Co (13.08mg kg-1) and Fe (38635.02mg kg-1)\u00a0in Huanggang road dusts, whose average concentrations were close to the background levels. In comparison with the reference data reported from the selected cities worldwide, the urban road dusts were seriously polluted by heavy metals to diverse degrees. The contour distribution maps implied that obviously higher values zones were found between two different types of urban areas, located to both sides of the coastline of Yangtze River. Multivariate statistical analysis revealed that the enriched heavy metals had emanated from the combined effects of both natural sources and anthropogenic sources. Three pollution indices indicated that the riskiest element mainly comprising Cr, Ni, Cu, and Pb appeared to be the major contributors to the urban environmental pollution. Avoiding continuous damage requires, the riskiest metallic contaminants should be paid preferential attention to.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11356-018-3282-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1113424", 
        "issn": [
          "0944-1344", 
          "1614-7499"
        ], 
        "name": "Environmental Science and Pollution Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "36", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "25"
      }
    ], 
    "name": "Contamination characteristics and potential environmental implications of heavy metals in road dusts in typical industrial and agricultural cities, southeastern Hubei Province, Central China", 
    "pagination": "36223-36238", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "aa3beee6e2b16e6f696c623bf42c012b4795ae7a8de37bcda1cf6f240fef6895"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30362041"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9441769"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11356-018-3282-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107849217"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11356-018-3282-6", 
      "https://app.dimensions.ai/details/publication/pub.1107849217"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89807_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11356-018-3282-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11356-018-3282-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11356-018-3282-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11356-018-3282-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11356-018-3282-6'


 

This table displays all metadata directly associated to this object as RDF triples.

292 TRIPLES      21 PREDICATES      78 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11356-018-3282-6 schema:about N2bf06228c9734263bb74eaeacb4527c2
2 N4ba7472dffa24aed94f2f62cc164c16f
3 N5c7da2e437b84ef3922945918f57df2d
4 N62f64dea9b7f429f8cb4eb5488eaa1fd
5 N63ad0b05e03a4450b2d5ab6c7da69cf0
6 N6c35e114cf0a418cb1df1af5599e3edd
7 N7b30dff48f454b82b1f123c7587e13fb
8 N843a95aebaa4489bbdeb81fb74e891fc
9 N8f607e9d5b8d4ea1bb6172d843ff728e
10 Nba15ea8b18e74255b38af3e2fa026a05
11 Nc7d428e1f1d046679956d57b9aa0ae57
12 Ncbb2db35d2c0495aa5ffc92ac3a15883
13 Ne232bad5355445498a5ce6e633a02530
14 anzsrc-for:04
15 anzsrc-for:0402
16 schema:author N38e4558db6d94a71a69a06c2ed4e85ad
17 schema:citation sg:pub.10.1007/s002540050473
18 sg:pub.10.1007/s10653-016-9836-y
19 sg:pub.10.1007/s11356-016-7200-5
20 sg:pub.10.1007/s11356-016-7934-0
21 sg:pub.10.1007/s11356-017-0052-9
22 sg:pub.10.1007/s12665-014-3578-x
23 https://doi.org/10.1016/0012-821x(79)90049-9
24 https://doi.org/10.1016/0043-1354(80)90143-8
25 https://doi.org/10.1016/j.atmosenv.2014.01.054
26 https://doi.org/10.1016/j.atmosenv.2015.08.001
27 https://doi.org/10.1016/j.chemosphere.2016.11.088
28 https://doi.org/10.1016/j.chemosphere.2017.06.108
29 https://doi.org/10.1016/j.ecoenv.2014.04.022
30 https://doi.org/10.1016/j.ecoenv.2014.11.005
31 https://doi.org/10.1016/j.ecoenv.2015.06.019
32 https://doi.org/10.1016/j.ecoenv.2015.11.006
33 https://doi.org/10.1016/j.ecoenv.2016.02.020
34 https://doi.org/10.1016/j.ecoenv.2016.10.037
35 https://doi.org/10.1016/j.ecoenv.2016.11.003
36 https://doi.org/10.1016/j.envpol.2011.01.037
37 https://doi.org/10.1016/j.envpol.2012.12.009
38 https://doi.org/10.1016/j.envpol.2013.07.041
39 https://doi.org/10.1016/j.geoderma.2017.09.016
40 https://doi.org/10.1016/j.gexplo.2016.01.005
41 https://doi.org/10.1016/j.gexplo.2017.09.012
42 https://doi.org/10.1016/j.jhazmat.2008.04.052
43 https://doi.org/10.1016/j.jhazmat.2009.09.001
44 https://doi.org/10.1016/j.jhazmat.2012.12.024
45 https://doi.org/10.1016/j.scitotenv.2016.02.101
46 https://doi.org/10.1016/j.scitotenv.2017.05.180
47 https://doi.org/10.1016/j.scitotenv.2017.08.004
48 https://doi.org/10.1016/j.scitotenv.2017.08.123
49 https://doi.org/10.1016/j.scitotenv.2017.11.144
50 https://doi.org/10.1016/j.scitotenv.2017.11.177
51 https://doi.org/10.1016/j.scitotenv.2018.05.059
52 https://doi.org/10.1021/es00002a024
53 schema:datePublished 2018-12
54 schema:datePublishedReg 2018-12-01
55 schema:description In November 2013, the total concentration of selected heavy metals in 43 urban dust samples, collected from two small-sized cities of industrial E'zhou and agricultural Huanggang, located in the southeastern Hubei province, central China, was detected quantitatively by flame atomic absorption spectrometric (FAAS) for ultimate purpose of pollution monitoring and risk evaluation. Results indicated that the mean concentrations exceeding their respective background values were observed for all the investigated metals, with the exception of Co (13.08mg kg<sup>-1</sup>) and Fe (38635.02mg kg<sup>-1</sup>) in Huanggang road dusts, whose average concentrations were close to the background levels. In comparison with the reference data reported from the selected cities worldwide, the urban road dusts were seriously polluted by heavy metals to diverse degrees. The contour distribution maps implied that obviously higher values zones were found between two different types of urban areas, located to both sides of the coastline of Yangtze River. Multivariate statistical analysis revealed that the enriched heavy metals had emanated from the combined effects of both natural sources and anthropogenic sources. Three pollution indices indicated that the riskiest element mainly comprising Cr, Ni, Cu, and Pb appeared to be the major contributors to the urban environmental pollution. Avoiding continuous damage requires, the riskiest metallic contaminants should be paid preferential attention to.
56 schema:genre research_article
57 schema:inLanguage en
58 schema:isAccessibleForFree false
59 schema:isPartOf Nbf0c77097c12428eae1402465e6712c0
60 Ncdd78578c88b4691930f5e9cdfd545e7
61 sg:journal.1113424
62 schema:name Contamination characteristics and potential environmental implications of heavy metals in road dusts in typical industrial and agricultural cities, southeastern Hubei Province, Central China
63 schema:pagination 36223-36238
64 schema:productId N48ff4762047f4a3781d57a20eaa64ebd
65 N785351bf6eba4df9ba8a1ea370eb4575
66 N887fa6498d784427922cd5160b0452b0
67 Nac5da593659a4ed58f97c0e2feb73856
68 Nc3957da8cc15401abeef15e691dff4cd
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107849217
70 https://doi.org/10.1007/s11356-018-3282-6
71 schema:sdDatePublished 2019-04-11T09:57
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher N6a5ab4ae75e94dfb8763d23c13b8fb97
74 schema:url https://link.springer.com/10.1007%2Fs11356-018-3282-6
75 sgo:license sg:explorer/license/
76 sgo:sdDataset articles
77 rdf:type schema:ScholarlyArticle
78 N0e4629cf252c4d419ba8d66450fe11af rdf:first Nd895a2c3523141e7bb196bd665b505b5
79 rdf:rest N6ac16b92878a4e51b24308365ac8f56e
80 N2bf06228c9734263bb74eaeacb4527c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Risk Assessment
82 rdf:type schema:DefinedTerm
83 N336a5e3cb2194bd2b9dd1a93ea65434c rdf:first N52ba907d2ac6470faf613310940b7732
84 rdf:rest Nf627a63c24e24bdf8b5f0540764c33f7
85 N38e4558db6d94a71a69a06c2ed4e85ad rdf:first sg:person.011451520237.18
86 rdf:rest Nccea762eb05c411e9b9f81ace92440ae
87 N48ff4762047f4a3781d57a20eaa64ebd schema:name pubmed_id
88 schema:value 30362041
89 rdf:type schema:PropertyValue
90 N4ba7472dffa24aed94f2f62cc164c16f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Cities
92 rdf:type schema:DefinedTerm
93 N52ba907d2ac6470faf613310940b7732 schema:affiliation https://www.grid.ac/institutes/grid.410651.7
94 schema:familyName Zhang
95 schema:givenName Li
96 rdf:type schema:Person
97 N5c7da2e437b84ef3922945918f57df2d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name China
99 rdf:type schema:DefinedTerm
100 N62f64dea9b7f429f8cb4eb5488eaa1fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Spectrophotometry, Atomic
102 rdf:type schema:DefinedTerm
103 N63ad0b05e03a4450b2d5ab6c7da69cf0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Dust
105 rdf:type schema:DefinedTerm
106 N6a5ab4ae75e94dfb8763d23c13b8fb97 schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 N6ac16b92878a4e51b24308365ac8f56e rdf:first sg:person.0772103023.77
109 rdf:rest N336a5e3cb2194bd2b9dd1a93ea65434c
110 N6c35e114cf0a418cb1df1af5599e3edd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Industry
112 rdf:type schema:DefinedTerm
113 N785351bf6eba4df9ba8a1ea370eb4575 schema:name nlm_unique_id
114 schema:value 9441769
115 rdf:type schema:PropertyValue
116 N7b30dff48f454b82b1f123c7587e13fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Agriculture
118 rdf:type schema:DefinedTerm
119 N843a95aebaa4489bbdeb81fb74e891fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Soil Pollutants
121 rdf:type schema:DefinedTerm
122 N887fa6498d784427922cd5160b0452b0 schema:name readcube_id
123 schema:value aa3beee6e2b16e6f696c623bf42c012b4795ae7a8de37bcda1cf6f240fef6895
124 rdf:type schema:PropertyValue
125 N8cc45248536e4cbca576a98c33108a65 rdf:first sg:person.01216014700.31
126 rdf:rest Nafea2f1e32db4d55be0a85124ded9a90
127 N8f607e9d5b8d4ea1bb6172d843ff728e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Metals, Heavy
129 rdf:type schema:DefinedTerm
130 Na18cb12b6d9242d889dc4e80c174d967 schema:affiliation https://www.grid.ac/institutes/grid.412787.f
131 schema:familyName Zhong
132 schema:givenName Ping
133 rdf:type schema:Person
134 Nac5da593659a4ed58f97c0e2feb73856 schema:name doi
135 schema:value 10.1007/s11356-018-3282-6
136 rdf:type schema:PropertyValue
137 Nafea2f1e32db4d55be0a85124ded9a90 rdf:first Nc0ab35886b784dd9a2d9388a04924f4f
138 rdf:rest N0e4629cf252c4d419ba8d66450fe11af
139 Nba15ea8b18e74255b38af3e2fa026a05 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Environmental Pollution
141 rdf:type schema:DefinedTerm
142 Nbf0c77097c12428eae1402465e6712c0 schema:issueNumber 36
143 rdf:type schema:PublicationIssue
144 Nc0ab35886b784dd9a2d9388a04924f4f schema:affiliation https://www.grid.ac/institutes/grid.410651.7
145 schema:familyName Liu
146 schema:givenName Hao
147 rdf:type schema:Person
148 Nc3957da8cc15401abeef15e691dff4cd schema:name dimensions_id
149 schema:value pub.1107849217
150 rdf:type schema:PropertyValue
151 Nc7d428e1f1d046679956d57b9aa0ae57 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Environmental Monitoring
153 rdf:type schema:DefinedTerm
154 Ncbb2db35d2c0495aa5ffc92ac3a15883 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Multivariate Analysis
156 rdf:type schema:DefinedTerm
157 Nccea762eb05c411e9b9f81ace92440ae rdf:first sg:person.01222560023.77
158 rdf:rest N8cc45248536e4cbca576a98c33108a65
159 Ncdd78578c88b4691930f5e9cdfd545e7 schema:volumeNumber 25
160 rdf:type schema:PublicationVolume
161 Nd895a2c3523141e7bb196bd665b505b5 schema:affiliation https://www.grid.ac/institutes/grid.410651.7
162 schema:familyName Zhang
163 schema:givenName Li-Li
164 rdf:type schema:Person
165 Ne232bad5355445498a5ce6e633a02530 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Humans
167 rdf:type schema:DefinedTerm
168 Nf627a63c24e24bdf8b5f0540764c33f7 rdf:first Na18cb12b6d9242d889dc4e80c174d967
169 rdf:rest rdf:nil
170 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
171 schema:name Earth Sciences
172 rdf:type schema:DefinedTerm
173 anzsrc-for:0402 schema:inDefinedTermSet anzsrc-for:
174 schema:name Geochemistry
175 rdf:type schema:DefinedTerm
176 sg:journal.1113424 schema:issn 0944-1344
177 1614-7499
178 schema:name Environmental Science and Pollution Research
179 rdf:type schema:Periodical
180 sg:person.011451520237.18 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
181 schema:familyName Xu
182 schema:givenName Da-Mao
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011451520237.18
184 rdf:type schema:Person
185 sg:person.01216014700.31 schema:affiliation https://www.grid.ac/institutes/grid.454798.3
186 schema:familyName Yan
187 schema:givenName Bo
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216014700.31
189 rdf:type schema:Person
190 sg:person.01222560023.77 schema:affiliation https://www.grid.ac/institutes/grid.410651.7
191 schema:familyName Zhang
192 schema:givenName Jia-Quan
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222560023.77
194 rdf:type schema:Person
195 sg:person.0772103023.77 schema:affiliation https://www.grid.ac/institutes/grid.410651.7
196 schema:familyName Zhan
197 schema:givenName Chang-Lin
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772103023.77
199 rdf:type schema:Person
200 sg:pub.10.1007/s002540050473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027730886
201 https://doi.org/10.1007/s002540050473
202 rdf:type schema:CreativeWork
203 sg:pub.10.1007/s10653-016-9836-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1010824452
204 https://doi.org/10.1007/s10653-016-9836-y
205 rdf:type schema:CreativeWork
206 sg:pub.10.1007/s11356-016-7200-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008442462
207 https://doi.org/10.1007/s11356-016-7200-5
208 rdf:type schema:CreativeWork
209 sg:pub.10.1007/s11356-016-7934-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002727966
210 https://doi.org/10.1007/s11356-016-7934-0
211 rdf:type schema:CreativeWork
212 sg:pub.10.1007/s11356-017-0052-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091517594
213 https://doi.org/10.1007/s11356-017-0052-9
214 rdf:type schema:CreativeWork
215 sg:pub.10.1007/s12665-014-3578-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046585970
216 https://doi.org/10.1007/s12665-014-3578-x
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/0012-821x(79)90049-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031484139
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/0043-1354(80)90143-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032993455
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/j.atmosenv.2014.01.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017963310
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/j.atmosenv.2015.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033000512
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/j.chemosphere.2016.11.088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039307693
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/j.chemosphere.2017.06.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086328210
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/j.ecoenv.2014.04.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026394716
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1016/j.ecoenv.2014.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016862271
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1016/j.ecoenv.2015.06.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018751465
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1016/j.ecoenv.2015.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039738710
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1016/j.ecoenv.2016.02.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035374546
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1016/j.ecoenv.2016.10.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034052803
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1016/j.ecoenv.2016.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020648008
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1016/j.envpol.2011.01.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035567719
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1016/j.envpol.2012.12.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043200442
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1016/j.envpol.2013.07.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042543423
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1016/j.geoderma.2017.09.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091862676
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1016/j.gexplo.2016.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023281847
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1016/j.gexplo.2017.09.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091973674
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1016/j.jhazmat.2008.04.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046030079
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1016/j.jhazmat.2009.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037574044
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1016/j.jhazmat.2012.12.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001182487
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1016/j.scitotenv.2016.02.101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031794273
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1016/j.scitotenv.2017.05.180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085573379
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1016/j.scitotenv.2017.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091055063
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1016/j.scitotenv.2017.08.123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091413914
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1016/j.scitotenv.2017.11.144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092828466
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1016/j.scitotenv.2017.11.177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092977494
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1016/j.scitotenv.2018.05.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103963400
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1021/es00002a024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055483836
277 rdf:type schema:CreativeWork
278 https://www.grid.ac/institutes/grid.410651.7 schema:alternateName Hubei Polytechnic University
279 schema:name Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, 435003, Huangshi, People’s Republic of China
280 rdf:type schema:Organization
281 https://www.grid.ac/institutes/grid.410726.6 schema:alternateName University of Chinese Academy of Sciences
282 schema:name Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, 435003, Huangshi, People’s Republic of China
283 State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640, Guangzhou, People’s Republic of China
284 University of Chinese Academy of Sciences, 100082, Beijing, People’s Republic of China
285 rdf:type schema:Organization
286 https://www.grid.ac/institutes/grid.412787.f schema:alternateName Wuhan University of Science and Technology
287 schema:name College of Resources and Environmental Engineering, Wuhan University of Science and Technology, 430081, Wuhan, People’s Republic of China
288 Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, 435003, Huangshi, People’s Republic of China
289 rdf:type schema:Organization
290 https://www.grid.ac/institutes/grid.454798.3 schema:alternateName Guangzhou Institute of Geochemistry
291 schema:name State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640, Guangzhou, People’s Republic of China
292 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...