Removal mechanism of sulfamethazine and its intermediates from water by a rotating advanced oxidation contactor equipped with TiO2–high-silica zeolite composite ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-10

AUTHORS

Shuji Fukahori, Misaki Ito, Taku Fujiwara

ABSTRACT

The removal of antibiotic sulfamethazine (SMT) and its intermediates from water was investigated using a rotating advanced oxidation contactor (RAOC) equipped with TiO2-high-silica zeolite composite sheets. SMT was readily removed from water through adsorption onto high-silica zeolite and photocatalytic decomposition by TiO2 inside the composite sheet. Some degradation intermediates were retained and photocatalytically decomposed inside the composite sheet. Relatively hydrophobic intermediates such as hydroxylated SMT were captured inside the sheets, whereas hydrophilic intermediates were distributed in water. This was attributed to the hydrophobic interactions in the adsorption mechanism of high-silica zeolite. The time courses of the NH4+, NO3-, and SO42- ion concentration during the RAOC treatment of SMT were evaluated. After treatment by RAOC for 24 h, approximately 94% of nitrogen derived from the amino and sulfanilamide groups and 39% of sulfur from the sulfanilamide group were mineralized, which indicated that the mineralization behavior of SMT treated by RAOC was different from that treated by TiO2 powder. These results strongly suggested that the dissociation of the amino group and cleavage of the sulfonamide group and subsequent dissociation of the amino group preferentially proceeded inside the composite sheets. More... »

PAGES

29017-29025

References to SciGraph publications

Journal

Author Affiliations

From Grant

  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11356-018-2909-y

    DOI

    http://dx.doi.org/10.1007/s11356-018-2909-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1106150301

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30109686


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Ehime University", 
              "id": "https://www.grid.ac/institutes/grid.255464.4", 
              "name": [
                "Paper Industry Innovation Center of Ehime University, Shikokuchuo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fukahori", 
            "givenName": "Shuji", 
            "id": "sg:person.01031051231.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031051231.92"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "K\u014dchi University", 
              "id": "https://www.grid.ac/institutes/grid.278276.e", 
              "name": [
                "Graduate School of Integrated Arts and Sciences, Kochi University, Kochi, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ito", 
            "givenName": "Misaki", 
            "id": "sg:person.01203130240.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203130240.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "K\u014dchi University", 
              "id": "https://www.grid.ac/institutes/grid.278276.e", 
              "name": [
                "Research and Education Faculty, Natural Sciences Cluster, Agriculture Unit, Kochi University, 200 Monobe Otsu, 783-8502, Nankoku, Kochi, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fujiwara", 
            "givenName": "Taku", 
            "id": "sg:person.0662607140.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662607140.54"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0926-3373(03)00270-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000832849"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0926-3373(03)00270-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000832849"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10098-015-0967-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002997945", 
              "https://doi.org/10.1007/s10098-015-0967-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jhazmat.2011.09.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003060519"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jhazmat.2014.02.028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006739923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jhazmat.2014.02.028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006739923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jhazmat.2014.02.028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006739923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jhazmat.2014.02.028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006739923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.chemosphere.2013.02.027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009377966"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.watres.2015.02.026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013792865"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.chemosphere.2013.01.040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014454533"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cattod.2016.11.050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021563376"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apcata.2012.03.042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023113316"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.scitotenv.2013.11.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024169410"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.envpol.2011.12.034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025983609"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cattod.2016.08.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027534599"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cej.2006.05.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029670452"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jhazmat.2009.11.119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031905691"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11356-013-1707-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035712066", 
              "https://doi.org/10.1007/s11356-013-1707-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jenvman.2015.04.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037890041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jhazmat.2014.04.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038410503"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0043-1354(00)00022-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038953746"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.chemosphere.2012.07.066", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039671340"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.desal.2011.03.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040216233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jcis.2004.03.048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040556008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jhazmat.2008.05.121", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043109384"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.chemosphere.2012.04.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043455454"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.watres.2012.03.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045205010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jhazmat.2014.07.041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049812001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cej.2015.12.046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052191852"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jece.2014.03.025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052243663"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2166/wst.2012.513", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069145707"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2166/wst.2015.182", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069147432"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ep.12741", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091879565"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-10", 
        "datePublishedReg": "2018-10-01", 
        "description": "The removal of antibiotic sulfamethazine (SMT) and its intermediates from water was investigated using a rotating advanced oxidation contactor (RAOC) equipped with TiO2-high-silica zeolite composite sheets. SMT was readily removed from water through adsorption onto high-silica zeolite and photocatalytic decomposition by TiO2 inside the composite sheet. Some degradation intermediates were retained and photocatalytically decomposed inside the composite sheet. Relatively hydrophobic intermediates such as hydroxylated SMT were captured inside the sheets, whereas hydrophilic intermediates were distributed in water. This was attributed to the hydrophobic interactions in the adsorption mechanism of high-silica zeolite. The time courses of the NH4+, NO3-, and SO42- ion concentration during the RAOC treatment of SMT were evaluated. After treatment by RAOC for 24\u00a0h, approximately 94% of nitrogen derived from the amino and sulfanilamide groups and 39% of sulfur from the sulfanilamide group were mineralized, which indicated that the mineralization behavior of SMT treated by RAOC was different from that treated by TiO2 powder. These results strongly suggested that the dissociation of the amino group and cleavage of the sulfonamide group and subsequent dissociation of the amino group preferentially proceeded inside the composite sheets.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11356-018-2909-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5899172", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1113424", 
            "issn": [
              "0944-1344", 
              "1614-7499"
            ], 
            "name": "Environmental Science and Pollution Research", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "29", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "25"
          }
        ], 
        "name": "Removal mechanism of sulfamethazine and its intermediates from water by a rotating advanced oxidation contactor equipped with TiO2\u2013high-silica zeolite composite sheets", 
        "pagination": "29017-29025", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "710095a797f0a07488b8182b634bc3592a33cc2dc70e117b518db61ac38775f4"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30109686"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9441769"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11356-018-2909-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1106150301"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11356-018-2909-y", 
          "https://app.dimensions.ai/details/publication/pub.1106150301"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T00:25", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000564.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs11356-018-2909-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11356-018-2909-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11356-018-2909-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11356-018-2909-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11356-018-2909-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    181 TRIPLES      21 PREDICATES      59 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11356-018-2909-y schema:about anzsrc-for:09
    2 anzsrc-for:0904
    3 schema:author N766b17e565304e96a010358f193e9700
    4 schema:citation sg:pub.10.1007/s10098-015-0967-0
    5 sg:pub.10.1007/s11356-013-1707-9
    6 https://doi.org/10.1002/ep.12741
    7 https://doi.org/10.1016/j.apcata.2012.03.042
    8 https://doi.org/10.1016/j.cattod.2016.08.015
    9 https://doi.org/10.1016/j.cattod.2016.11.050
    10 https://doi.org/10.1016/j.cej.2006.05.011
    11 https://doi.org/10.1016/j.cej.2015.12.046
    12 https://doi.org/10.1016/j.chemosphere.2012.04.018
    13 https://doi.org/10.1016/j.chemosphere.2012.07.066
    14 https://doi.org/10.1016/j.chemosphere.2013.01.040
    15 https://doi.org/10.1016/j.chemosphere.2013.02.027
    16 https://doi.org/10.1016/j.desal.2011.03.006
    17 https://doi.org/10.1016/j.envpol.2011.12.034
    18 https://doi.org/10.1016/j.jcis.2004.03.048
    19 https://doi.org/10.1016/j.jece.2014.03.025
    20 https://doi.org/10.1016/j.jenvman.2015.04.002
    21 https://doi.org/10.1016/j.jhazmat.2008.05.121
    22 https://doi.org/10.1016/j.jhazmat.2009.11.119
    23 https://doi.org/10.1016/j.jhazmat.2011.09.008
    24 https://doi.org/10.1016/j.jhazmat.2014.02.028
    25 https://doi.org/10.1016/j.jhazmat.2014.04.024
    26 https://doi.org/10.1016/j.jhazmat.2014.07.041
    27 https://doi.org/10.1016/j.scitotenv.2013.11.008
    28 https://doi.org/10.1016/j.watres.2012.03.008
    29 https://doi.org/10.1016/j.watres.2015.02.026
    30 https://doi.org/10.1016/s0043-1354(00)00022-1
    31 https://doi.org/10.1016/s0926-3373(03)00270-4
    32 https://doi.org/10.2166/wst.2012.513
    33 https://doi.org/10.2166/wst.2015.182
    34 schema:datePublished 2018-10
    35 schema:datePublishedReg 2018-10-01
    36 schema:description The removal of antibiotic sulfamethazine (SMT) and its intermediates from water was investigated using a rotating advanced oxidation contactor (RAOC) equipped with TiO<sub>2</sub>-high-silica zeolite composite sheets. SMT was readily removed from water through adsorption onto high-silica zeolite and photocatalytic decomposition by TiO<sub>2</sub> inside the composite sheet. Some degradation intermediates were retained and photocatalytically decomposed inside the composite sheet. Relatively hydrophobic intermediates such as hydroxylated SMT were captured inside the sheets, whereas hydrophilic intermediates were distributed in water. This was attributed to the hydrophobic interactions in the adsorption mechanism of high-silica zeolite. The time courses of the NH<sub>4</sub><sup>+</sup>, NO<sub>3</sub><sup>-</sup>, and SO<sub>4</sub><sup>2-</sup> ion concentration during the RAOC treatment of SMT were evaluated. After treatment by RAOC for 24 h, approximately 94% of nitrogen derived from the amino and sulfanilamide groups and 39% of sulfur from the sulfanilamide group were mineralized, which indicated that the mineralization behavior of SMT treated by RAOC was different from that treated by TiO<sub>2</sub> powder. These results strongly suggested that the dissociation of the amino group and cleavage of the sulfonamide group and subsequent dissociation of the amino group preferentially proceeded inside the composite sheets.
    37 schema:genre research_article
    38 schema:inLanguage en
    39 schema:isAccessibleForFree false
    40 schema:isPartOf N215864be47a24d1cad15a75ef1f38cbc
    41 N44aff7f49a8c42349a8f4b9a04318abb
    42 sg:journal.1113424
    43 schema:name Removal mechanism of sulfamethazine and its intermediates from water by a rotating advanced oxidation contactor equipped with TiO2–high-silica zeolite composite sheets
    44 schema:pagination 29017-29025
    45 schema:productId N14c7d1af1a0b41868b81fc8225eee8a8
    46 N78eaeb91cea84db4a08c56f9b8340dd9
    47 N84734ff275124e0d903f8842d10d1752
    48 N9a0acf518b3b4d64888fee7d1efc1c6f
    49 Nc98e4f69757b42e095eec231350edbec
    50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106150301
    51 https://doi.org/10.1007/s11356-018-2909-y
    52 schema:sdDatePublished 2019-04-11T00:25
    53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    54 schema:sdPublisher Ncc02ed7b1daa4ec18ca464ff51c4ae41
    55 schema:url https://link.springer.com/10.1007%2Fs11356-018-2909-y
    56 sgo:license sg:explorer/license/
    57 sgo:sdDataset articles
    58 rdf:type schema:ScholarlyArticle
    59 N14c7d1af1a0b41868b81fc8225eee8a8 schema:name pubmed_id
    60 schema:value 30109686
    61 rdf:type schema:PropertyValue
    62 N215864be47a24d1cad15a75ef1f38cbc schema:issueNumber 29
    63 rdf:type schema:PublicationIssue
    64 N44aff7f49a8c42349a8f4b9a04318abb schema:volumeNumber 25
    65 rdf:type schema:PublicationVolume
    66 N766b17e565304e96a010358f193e9700 rdf:first sg:person.01031051231.92
    67 rdf:rest Ncd2a6abbe357472da6ece61bf0f4910c
    68 N78eaeb91cea84db4a08c56f9b8340dd9 schema:name nlm_unique_id
    69 schema:value 9441769
    70 rdf:type schema:PropertyValue
    71 N84734ff275124e0d903f8842d10d1752 schema:name dimensions_id
    72 schema:value pub.1106150301
    73 rdf:type schema:PropertyValue
    74 N9a0acf518b3b4d64888fee7d1efc1c6f schema:name readcube_id
    75 schema:value 710095a797f0a07488b8182b634bc3592a33cc2dc70e117b518db61ac38775f4
    76 rdf:type schema:PropertyValue
    77 N9f28d04ee42a44508d3b505da2e19af6 rdf:first sg:person.0662607140.54
    78 rdf:rest rdf:nil
    79 Nc98e4f69757b42e095eec231350edbec schema:name doi
    80 schema:value 10.1007/s11356-018-2909-y
    81 rdf:type schema:PropertyValue
    82 Ncc02ed7b1daa4ec18ca464ff51c4ae41 schema:name Springer Nature - SN SciGraph project
    83 rdf:type schema:Organization
    84 Ncd2a6abbe357472da6ece61bf0f4910c rdf:first sg:person.01203130240.31
    85 rdf:rest N9f28d04ee42a44508d3b505da2e19af6
    86 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    87 schema:name Engineering
    88 rdf:type schema:DefinedTerm
    89 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Chemical Engineering
    91 rdf:type schema:DefinedTerm
    92 sg:grant.5899172 http://pending.schema.org/fundedItem sg:pub.10.1007/s11356-018-2909-y
    93 rdf:type schema:MonetaryGrant
    94 sg:journal.1113424 schema:issn 0944-1344
    95 1614-7499
    96 schema:name Environmental Science and Pollution Research
    97 rdf:type schema:Periodical
    98 sg:person.01031051231.92 schema:affiliation https://www.grid.ac/institutes/grid.255464.4
    99 schema:familyName Fukahori
    100 schema:givenName Shuji
    101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031051231.92
    102 rdf:type schema:Person
    103 sg:person.01203130240.31 schema:affiliation https://www.grid.ac/institutes/grid.278276.e
    104 schema:familyName Ito
    105 schema:givenName Misaki
    106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203130240.31
    107 rdf:type schema:Person
    108 sg:person.0662607140.54 schema:affiliation https://www.grid.ac/institutes/grid.278276.e
    109 schema:familyName Fujiwara
    110 schema:givenName Taku
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662607140.54
    112 rdf:type schema:Person
    113 sg:pub.10.1007/s10098-015-0967-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002997945
    114 https://doi.org/10.1007/s10098-015-0967-0
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/s11356-013-1707-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035712066
    117 https://doi.org/10.1007/s11356-013-1707-9
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1002/ep.12741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091879565
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1016/j.apcata.2012.03.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023113316
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1016/j.cattod.2016.08.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027534599
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1016/j.cattod.2016.11.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021563376
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1016/j.cej.2006.05.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029670452
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1016/j.cej.2015.12.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052191852
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1016/j.chemosphere.2012.04.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043455454
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1016/j.chemosphere.2012.07.066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039671340
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1016/j.chemosphere.2013.01.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014454533
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1016/j.chemosphere.2013.02.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009377966
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1016/j.desal.2011.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040216233
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1016/j.envpol.2011.12.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025983609
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1016/j.jcis.2004.03.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040556008
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1016/j.jece.2014.03.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052243663
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1016/j.jenvman.2015.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037890041
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1016/j.jhazmat.2008.05.121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043109384
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1016/j.jhazmat.2009.11.119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031905691
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1016/j.jhazmat.2011.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003060519
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1016/j.jhazmat.2014.02.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006739923
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1016/j.jhazmat.2014.04.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038410503
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1016/j.jhazmat.2014.07.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049812001
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1016/j.scitotenv.2013.11.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024169410
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1016/j.watres.2012.03.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045205010
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1016/j.watres.2015.02.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013792865
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1016/s0043-1354(00)00022-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038953746
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1016/s0926-3373(03)00270-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000832849
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.2166/wst.2012.513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069145707
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.2166/wst.2015.182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069147432
    174 rdf:type schema:CreativeWork
    175 https://www.grid.ac/institutes/grid.255464.4 schema:alternateName Ehime University
    176 schema:name Paper Industry Innovation Center of Ehime University, Shikokuchuo, Japan
    177 rdf:type schema:Organization
    178 https://www.grid.ac/institutes/grid.278276.e schema:alternateName Kōchi University
    179 schema:name Graduate School of Integrated Arts and Sciences, Kochi University, Kochi, Japan
    180 Research and Education Faculty, Natural Sciences Cluster, Agriculture Unit, Kochi University, 200 Monobe Otsu, 783-8502, Nankoku, Kochi, Japan
    181 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...