Aerosol columnar characteristics and their heterogeneous nature over Varanasi, in the central Ganges valley View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-06-20

AUTHORS

Shani Tiwari, Dimitris Kaskaoutis, Vijay Kumar Soni, Shiv Dev Attri, Abhay Kumar Singh

ABSTRACT

The Indo–Gangetic Basin (IGB) experiences one of the highest aerosol loading over the globe with pronounced inter-/intra-seasonal variability. Four-year (January 2011–December 2014) continuous MICROTOPS-II sun-photometer measurements at Varanasi, central Ganges valley, provide an opportunity to investigate the aerosol physical and optical properties and their variability. A large variation in aerosol optical depth (AOD: from 0.23 to 1.89, mean of 0.82 ± 0.31) and Ångström exponent (AE: from 0.19 to 1.44, mean of 0.96 ± 0.27) is observed, indicating a highly turbid atmospheric environment with significant heterogeneity in aerosol sources, types and optical properties. The highest seasonal means of both AOD and AE are observed in the post-monsoon (October–November) season (0.95 ± 0.31 for AOD and 1.16 ± 0.14 for AE) followed by winter (December, January, February; 0.97 ± 0.34 for AOD and 1.09 ± 0.20 for AE) and are mainly attributed to the accumulation of aerosols from urban and biomass/crop residue burning emissions within a shallow boundary layer. In contrast, during the pre-monsoon and monsoon seasons, the aerosols are mostly coming from natural origin (desert and mineral dust) mixed with pollution in several cases. The spectral dependence of AE, the aerosol “curvature” effect and other graphical techniques are used for the identification of the aerosol types and their mixing processes in the atmosphere. Furthermore, the aerosol source–apportionment assessment using the weighted potential source contribution function (WPSCF) analysis reveals the different aerosol types, emission sources and transport pathways. More... »

PAGES

24726-24745

References to SciGraph publications

  • 2009-04. Black carbon and chemical characteristics of PM10 and PM2.5 at an urban site of North India in JOURNAL OF ATMOSPHERIC CHEMISTRY
  • 2010-07-07. Source apportionment of the ionic components in precipitation over an urban region in Western India in ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
  • 2005-05-25. Persistent, Widespread, and Strongly Absorbing Haze Over the Himalayan Foothills and the Indo-Gangetic Plains in PURE AND APPLIED GEOPHYSICS
  • 2016-03-05. Characterization and radiative impact of dust aerosols over northwestern part of India: a case study during a severe dust storm in METEOROLOGY AND ATMOSPHERIC PHYSICS
  • 2012-06. Seasonal variability in aerosol optical and physical characteristics estimated using the application of the Ångström formula over Mohal in the northwestern Himalaya, India in JOURNAL OF EARTH SYSTEM SCIENCE
  • 2016-01-25. Variability in optical properties of atmospheric aerosols and their frequency distribution over a mega city “New Delhi,” India in ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
  • 2006-02-09. Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau in CLIMATE DYNAMICS
  • 2014-01-25. Synoptic weather conditions and aerosol episodes over Indo-Gangetic Plains, India in CLIMATE DYNAMICS
  • 2013-11-21. Spatio-temporal variability of dust aerosols over the Sistan region in Iran based on satellite observations in NATURAL HAZARDS
  • 2015-04-21. Identification of aerosol types over Indo-Gangetic Basin: implications to optical properties and associated radiative forcing in ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
  • 2002-02. Comparison of atmospheric aerosol backscattering and air mass back trajectories in METEOROLOGY AND ATMOSPHERIC PHYSICS
  • 2005-04-05. Aerosol optical depth, physical properties and radiative forcing over the Arabian Sea in METEOROLOGY AND ATMOSPHERIC PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11356-018-2502-4

    DOI

    http://dx.doi.org/10.1007/s11356-018-2502-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1104994193

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29923051


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0399", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aerosols", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Air Pollutants", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Atmosphere", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biomass", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Dust", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Environment", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Environmental Monitoring", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "India", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Photometry", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Seasons", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Present Address: Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan", 
              "id": "http://www.grid.ac/institutes/grid.27476.30", 
              "name": [
                "Atmospheric Research Laboratory, Department of Physics, Banaras Hindu University, 221005, Varanasi, India", 
                "Present Address: Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tiwari", 
            "givenName": "Shani", 
            "id": "sg:person.01156157035.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156157035.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Atmospheric Research Team, Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 11810, Athens, Greece", 
              "id": "http://www.grid.ac/institutes/grid.8663.b", 
              "name": [
                "Atmospheric Research Team, Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 11810, Athens, Greece"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kaskaoutis", 
            "givenName": "Dimitris", 
            "id": "sg:person.012053552043.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012053552043.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "India Meteorological Department, 110001, New Delhi, India", 
              "id": "http://www.grid.ac/institutes/grid.466772.6", 
              "name": [
                "India Meteorological Department, 110001, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Soni", 
            "givenName": "Vijay Kumar", 
            "id": "sg:person.01244434450.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244434450.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "India Meteorological Department, 110001, New Delhi, India", 
              "id": "http://www.grid.ac/institutes/grid.466772.6", 
              "name": [
                "India Meteorological Department, 110001, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dev Attri", 
            "givenName": "Shiv", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "DST-Mahamana Centre of Excellence in Climate Change Research, B.H.U, 221005, Varanasi, India", 
              "id": "http://www.grid.ac/institutes/grid.411507.6", 
              "name": [
                "Atmospheric Research Laboratory, Department of Physics, Banaras Hindu University, 221005, Varanasi, India", 
                "DST-Mahamana Centre of Excellence in Climate Change Research, B.H.U, 221005, Varanasi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Singh", 
            "givenName": "Abhay Kumar", 
            "id": "sg:person.011504515653.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011504515653.83"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11069-013-0927-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049283515", 
              "https://doi.org/10.1007/s11069-013-0927-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-014-2055-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020933530", 
              "https://doi.org/10.1007/s00382-014-2055-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00703-004-0097-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019415408", 
              "https://doi.org/10.1007/s00703-004-0097-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11356-015-4495-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034888599", 
              "https://doi.org/10.1007/s11356-015-4495-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00703-016-0445-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050615655", 
              "https://doi.org/10.1007/s00703-016-0445-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00024-005-2685-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007143199", 
              "https://doi.org/10.1007/s00024-005-2685-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11356-010-0365-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016149642", 
              "https://doi.org/10.1007/s11356-010-0365-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12040-012-0194-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037367464", 
              "https://doi.org/10.1007/s12040-012-0194-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11356-016-6060-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033657034", 
              "https://doi.org/10.1007/s11356-016-6060-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s703-002-8227-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031195621", 
              "https://doi.org/10.1007/s703-002-8227-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10874-010-9148-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006059462", 
              "https://doi.org/10.1007/s10874-010-9148-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-006-0114-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046501442", 
              "https://doi.org/10.1007/s00382-006-0114-z"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-06-20", 
        "datePublishedReg": "2018-06-20", 
        "description": "The Indo\u2013Gangetic Basin (IGB) experiences one of the highest aerosol loading over the globe with pronounced inter-/intra-seasonal variability. Four-year (January 2011\u2013December 2014) continuous MICROTOPS-II sun-photometer measurements at Varanasi, central Ganges valley, provide an opportunity to investigate the aerosol physical and optical properties and their variability. A large variation in aerosol optical depth (AOD: from 0.23 to 1.89, mean of 0.82\u2009\u00b1\u20090.31) and \u00c5ngstr\u00f6m exponent (AE: from 0.19 to 1.44, mean of 0.96\u2009\u00b1\u20090.27) is observed, indicating a highly turbid atmospheric environment with significant heterogeneity in aerosol sources, types and optical properties. The highest seasonal means of both AOD and AE are observed in the post-monsoon (October\u2013November) season (0.95\u2009\u00b1\u20090.31 for AOD and 1.16\u2009\u00b1\u20090.14 for AE) followed by winter (December, January, February; 0.97\u2009\u00b1\u20090.34 for AOD and 1.09\u2009\u00b1\u20090.20 for AE) and are mainly attributed to the accumulation of aerosols from urban and biomass/crop residue burning emissions within a shallow boundary layer. In contrast, during the pre-monsoon and monsoon seasons, the aerosols are mostly coming from natural origin (desert and mineral dust) mixed with pollution in several cases. The spectral dependence of AE, the aerosol \u201ccurvature\u201d effect and other graphical techniques are used for the identification of the aerosol types and their mixing processes in the atmosphere. Furthermore, the aerosol source\u2013apportionment assessment using the weighted potential source contribution function (WPSCF) analysis reveals the different aerosol types, emission sources and transport pathways.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11356-018-2502-4", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1113424", 
            "issn": [
              "0944-1344", 
              "1614-7499"
            ], 
            "name": "Environmental Science and Pollution Research", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "25", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "25"
          }
        ], 
        "keywords": [
          "Indo-Gangetic Basin", 
          "Ganges valley", 
          "shallow boundary layer", 
          "aerosol types", 
          "highest seasonal mean", 
          "accumulation of aerosols", 
          "high aerosol loading", 
          "monsoon season", 
          "different aerosol types", 
          "aerosol loading", 
          "seasonal means", 
          "potential source contribution function (PSCF) analysis", 
          "sun-photometer measurements", 
          "optical depth", 
          "boundary layer", 
          "natural origin", 
          "transport pathways", 
          "Valley", 
          "aerosols", 
          "large variation", 
          "\u00c5ngstr\u00f6m exponent", 
          "atmospheric environment", 
          "function analysis", 
          "variability", 
          "season", 
          "emission sources", 
          "basin", 
          "winter", 
          "heterogeneous nature", 
          "depth", 
          "source", 
          "atmosphere", 
          "AOD", 
          "pollution", 
          "globe", 
          "variation", 
          "origin", 
          "graphical techniques", 
          "Varanasi", 
          "heterogeneity", 
          "accumulation", 
          "layer", 
          "environment", 
          "measurements", 
          "types", 
          "spectral dependence", 
          "loading", 
          "optical properties", 
          "emission", 
          "contrast", 
          "process", 
          "characteristics", 
          "crops", 
          "assessment", 
          "nature", 
          "significant heterogeneity", 
          "analysis", 
          "opportunities", 
          "properties", 
          "means", 
          "exponent", 
          "Ae", 
          "dependence", 
          "identification", 
          "effect", 
          "technique", 
          "pathway", 
          "cases", 
          "columnar characteristics", 
          "MICROTOPS", 
          "pronounced inter-/intra-seasonal variability", 
          "inter-/intra-seasonal variability", 
          "continuous MICROTOPS", 
          "central Ganges valley", 
          "turbid atmospheric environment", 
          "biomass/crop", 
          "aerosol source\u2013apportionment assessment", 
          "source\u2013apportionment assessment", 
          "weighted potential source contribution function (WPSCF) analysis", 
          "source contribution function (WPSCF) analysis", 
          "contribution function (WPSCF) analysis"
        ], 
        "name": "Aerosol columnar characteristics and their heterogeneous nature over Varanasi, in the central Ganges valley", 
        "pagination": "24726-24745", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1104994193"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11356-018-2502-4"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29923051"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11356-018-2502-4", 
          "https://app.dimensions.ai/details/publication/pub.1104994193"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_771.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11356-018-2502-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11356-018-2502-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11356-018-2502-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11356-018-2502-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11356-018-2502-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    269 TRIPLES      22 PREDICATES      129 URIs      109 LITERALS      17 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11356-018-2502-4 schema:about N0c04137388914167964457755355f11f
    2 N43a10a0eb1164a2287a441989a8bda1b
    3 N44328f60f62144dda023e9b72bd0c534
    4 N4c99f83c2f9144b38687de50030912dd
    5 N512a4701d71c47858598b7f68c9beaf1
    6 N6526584c419b48c88b29163b204ba092
    7 Nafba06ee67bf44e4a40b68c8350f2750
    8 Nbbceb945ff4c4421959a628032f6f7a0
    9 Nf36cbe8ec0224bbeacb511dd1df77032
    10 Nfae0f78962fc4428b19afc722ffbd9ec
    11 anzsrc-for:03
    12 anzsrc-for:0399
    13 schema:author N3324b28fe2cd4009b104a83174437033
    14 schema:citation sg:pub.10.1007/s00024-005-2685-8
    15 sg:pub.10.1007/s00382-006-0114-z
    16 sg:pub.10.1007/s00382-014-2055-2
    17 sg:pub.10.1007/s00703-004-0097-4
    18 sg:pub.10.1007/s00703-016-0445-1
    19 sg:pub.10.1007/s10874-010-9148-z
    20 sg:pub.10.1007/s11069-013-0927-0
    21 sg:pub.10.1007/s11356-010-0365-4
    22 sg:pub.10.1007/s11356-015-4495-6
    23 sg:pub.10.1007/s11356-016-6060-3
    24 sg:pub.10.1007/s12040-012-0194-6
    25 sg:pub.10.1007/s703-002-8227-6
    26 schema:datePublished 2018-06-20
    27 schema:datePublishedReg 2018-06-20
    28 schema:description The Indo–Gangetic Basin (IGB) experiences one of the highest aerosol loading over the globe with pronounced inter-/intra-seasonal variability. Four-year (January 2011–December 2014) continuous MICROTOPS-II sun-photometer measurements at Varanasi, central Ganges valley, provide an opportunity to investigate the aerosol physical and optical properties and their variability. A large variation in aerosol optical depth (AOD: from 0.23 to 1.89, mean of 0.82 ± 0.31) and Ångström exponent (AE: from 0.19 to 1.44, mean of 0.96 ± 0.27) is observed, indicating a highly turbid atmospheric environment with significant heterogeneity in aerosol sources, types and optical properties. The highest seasonal means of both AOD and AE are observed in the post-monsoon (October–November) season (0.95 ± 0.31 for AOD and 1.16 ± 0.14 for AE) followed by winter (December, January, February; 0.97 ± 0.34 for AOD and 1.09 ± 0.20 for AE) and are mainly attributed to the accumulation of aerosols from urban and biomass/crop residue burning emissions within a shallow boundary layer. In contrast, during the pre-monsoon and monsoon seasons, the aerosols are mostly coming from natural origin (desert and mineral dust) mixed with pollution in several cases. The spectral dependence of AE, the aerosol “curvature” effect and other graphical techniques are used for the identification of the aerosol types and their mixing processes in the atmosphere. Furthermore, the aerosol source–apportionment assessment using the weighted potential source contribution function (WPSCF) analysis reveals the different aerosol types, emission sources and transport pathways.
    29 schema:genre article
    30 schema:inLanguage en
    31 schema:isAccessibleForFree false
    32 schema:isPartOf N260ae6b7d6364071a8fcaf4e8bd57ed2
    33 Naf0cd4217c654743b850ab59e6804d06
    34 sg:journal.1113424
    35 schema:keywords AOD
    36 Ae
    37 Ganges valley
    38 Indo-Gangetic Basin
    39 MICROTOPS
    40 Valley
    41 Varanasi
    42 accumulation
    43 accumulation of aerosols
    44 aerosol loading
    45 aerosol source–apportionment assessment
    46 aerosol types
    47 aerosols
    48 analysis
    49 assessment
    50 atmosphere
    51 atmospheric environment
    52 basin
    53 biomass/crop
    54 boundary layer
    55 cases
    56 central Ganges valley
    57 characteristics
    58 columnar characteristics
    59 continuous MICROTOPS
    60 contrast
    61 contribution function (WPSCF) analysis
    62 crops
    63 dependence
    64 depth
    65 different aerosol types
    66 effect
    67 emission
    68 emission sources
    69 environment
    70 exponent
    71 function analysis
    72 globe
    73 graphical techniques
    74 heterogeneity
    75 heterogeneous nature
    76 high aerosol loading
    77 highest seasonal mean
    78 identification
    79 inter-/intra-seasonal variability
    80 large variation
    81 layer
    82 loading
    83 means
    84 measurements
    85 monsoon season
    86 natural origin
    87 nature
    88 opportunities
    89 optical depth
    90 optical properties
    91 origin
    92 pathway
    93 pollution
    94 potential source contribution function (PSCF) analysis
    95 process
    96 pronounced inter-/intra-seasonal variability
    97 properties
    98 season
    99 seasonal means
    100 shallow boundary layer
    101 significant heterogeneity
    102 source
    103 source contribution function (WPSCF) analysis
    104 source–apportionment assessment
    105 spectral dependence
    106 sun-photometer measurements
    107 technique
    108 transport pathways
    109 turbid atmospheric environment
    110 types
    111 variability
    112 variation
    113 weighted potential source contribution function (WPSCF) analysis
    114 winter
    115 Ångström exponent
    116 schema:name Aerosol columnar characteristics and their heterogeneous nature over Varanasi, in the central Ganges valley
    117 schema:pagination 24726-24745
    118 schema:productId N0493ed67d8c042d0896841d88724ad7c
    119 N8198d03d265e42669c20f944ec4245aa
    120 Nc42d90bc4d4840a79a6a3e82aeba1657
    121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104994193
    122 https://doi.org/10.1007/s11356-018-2502-4
    123 schema:sdDatePublished 2021-11-01T18:31
    124 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    125 schema:sdPublisher N2c43ee38e268455ea780f3d2fe08c809
    126 schema:url https://doi.org/10.1007/s11356-018-2502-4
    127 sgo:license sg:explorer/license/
    128 sgo:sdDataset articles
    129 rdf:type schema:ScholarlyArticle
    130 N0493ed67d8c042d0896841d88724ad7c schema:name doi
    131 schema:value 10.1007/s11356-018-2502-4
    132 rdf:type schema:PropertyValue
    133 N06489194efc84577ab8b7fe5c6f87c5c rdf:first sg:person.012053552043.65
    134 rdf:rest Nc00365cbadb94e28a56900377b852a1b
    135 N0c04137388914167964457755355f11f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Atmosphere
    137 rdf:type schema:DefinedTerm
    138 N260ae6b7d6364071a8fcaf4e8bd57ed2 schema:volumeNumber 25
    139 rdf:type schema:PublicationVolume
    140 N2c43ee38e268455ea780f3d2fe08c809 schema:name Springer Nature - SN SciGraph project
    141 rdf:type schema:Organization
    142 N3324b28fe2cd4009b104a83174437033 rdf:first sg:person.01156157035.88
    143 rdf:rest N06489194efc84577ab8b7fe5c6f87c5c
    144 N43a10a0eb1164a2287a441989a8bda1b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name Air Pollutants
    146 rdf:type schema:DefinedTerm
    147 N44328f60f62144dda023e9b72bd0c534 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name India
    149 rdf:type schema:DefinedTerm
    150 N4c99f83c2f9144b38687de50030912dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Seasons
    152 rdf:type schema:DefinedTerm
    153 N512a4701d71c47858598b7f68c9beaf1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name Environment
    155 rdf:type schema:DefinedTerm
    156 N6526584c419b48c88b29163b204ba092 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Dust
    158 rdf:type schema:DefinedTerm
    159 N7056264c04db4b25aaa67aaefa965fcd schema:affiliation grid-institutes:grid.466772.6
    160 schema:familyName Dev Attri
    161 schema:givenName Shiv
    162 rdf:type schema:Person
    163 N8198d03d265e42669c20f944ec4245aa schema:name dimensions_id
    164 schema:value pub.1104994193
    165 rdf:type schema:PropertyValue
    166 N8f467b45d0244a019fc274989f37dc0b rdf:first sg:person.011504515653.83
    167 rdf:rest rdf:nil
    168 Naf0cd4217c654743b850ab59e6804d06 schema:issueNumber 25
    169 rdf:type schema:PublicationIssue
    170 Nafba06ee67bf44e4a40b68c8350f2750 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    171 schema:name Photometry
    172 rdf:type schema:DefinedTerm
    173 Nbbceb945ff4c4421959a628032f6f7a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    174 schema:name Environmental Monitoring
    175 rdf:type schema:DefinedTerm
    176 Nc00365cbadb94e28a56900377b852a1b rdf:first sg:person.01244434450.01
    177 rdf:rest Nf0573bde21fe4db6abe702f1bb9572f4
    178 Nc42d90bc4d4840a79a6a3e82aeba1657 schema:name pubmed_id
    179 schema:value 29923051
    180 rdf:type schema:PropertyValue
    181 Nf0573bde21fe4db6abe702f1bb9572f4 rdf:first N7056264c04db4b25aaa67aaefa965fcd
    182 rdf:rest N8f467b45d0244a019fc274989f37dc0b
    183 Nf36cbe8ec0224bbeacb511dd1df77032 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    184 schema:name Aerosols
    185 rdf:type schema:DefinedTerm
    186 Nfae0f78962fc4428b19afc722ffbd9ec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    187 schema:name Biomass
    188 rdf:type schema:DefinedTerm
    189 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    190 schema:name Chemical Sciences
    191 rdf:type schema:DefinedTerm
    192 anzsrc-for:0399 schema:inDefinedTermSet anzsrc-for:
    193 schema:name Other Chemical Sciences
    194 rdf:type schema:DefinedTerm
    195 sg:journal.1113424 schema:issn 0944-1344
    196 1614-7499
    197 schema:name Environmental Science and Pollution Research
    198 schema:publisher Springer Nature
    199 rdf:type schema:Periodical
    200 sg:person.011504515653.83 schema:affiliation grid-institutes:grid.411507.6
    201 schema:familyName Singh
    202 schema:givenName Abhay Kumar
    203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011504515653.83
    204 rdf:type schema:Person
    205 sg:person.01156157035.88 schema:affiliation grid-institutes:grid.27476.30
    206 schema:familyName Tiwari
    207 schema:givenName Shani
    208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156157035.88
    209 rdf:type schema:Person
    210 sg:person.012053552043.65 schema:affiliation grid-institutes:grid.8663.b
    211 schema:familyName Kaskaoutis
    212 schema:givenName Dimitris
    213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012053552043.65
    214 rdf:type schema:Person
    215 sg:person.01244434450.01 schema:affiliation grid-institutes:grid.466772.6
    216 schema:familyName Soni
    217 schema:givenName Vijay Kumar
    218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244434450.01
    219 rdf:type schema:Person
    220 sg:pub.10.1007/s00024-005-2685-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007143199
    221 https://doi.org/10.1007/s00024-005-2685-8
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1007/s00382-006-0114-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1046501442
    224 https://doi.org/10.1007/s00382-006-0114-z
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1007/s00382-014-2055-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020933530
    227 https://doi.org/10.1007/s00382-014-2055-2
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1007/s00703-004-0097-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019415408
    230 https://doi.org/10.1007/s00703-004-0097-4
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1007/s00703-016-0445-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050615655
    233 https://doi.org/10.1007/s00703-016-0445-1
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1007/s10874-010-9148-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1006059462
    236 https://doi.org/10.1007/s10874-010-9148-z
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1007/s11069-013-0927-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049283515
    239 https://doi.org/10.1007/s11069-013-0927-0
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1007/s11356-010-0365-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016149642
    242 https://doi.org/10.1007/s11356-010-0365-4
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1007/s11356-015-4495-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034888599
    245 https://doi.org/10.1007/s11356-015-4495-6
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1007/s11356-016-6060-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033657034
    248 https://doi.org/10.1007/s11356-016-6060-3
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1007/s12040-012-0194-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037367464
    251 https://doi.org/10.1007/s12040-012-0194-6
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1007/s703-002-8227-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031195621
    254 https://doi.org/10.1007/s703-002-8227-6
    255 rdf:type schema:CreativeWork
    256 grid-institutes:grid.27476.30 schema:alternateName Present Address: Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan
    257 schema:name Atmospheric Research Laboratory, Department of Physics, Banaras Hindu University, 221005, Varanasi, India
    258 Present Address: Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan
    259 rdf:type schema:Organization
    260 grid-institutes:grid.411507.6 schema:alternateName DST-Mahamana Centre of Excellence in Climate Change Research, B.H.U, 221005, Varanasi, India
    261 schema:name Atmospheric Research Laboratory, Department of Physics, Banaras Hindu University, 221005, Varanasi, India
    262 DST-Mahamana Centre of Excellence in Climate Change Research, B.H.U, 221005, Varanasi, India
    263 rdf:type schema:Organization
    264 grid-institutes:grid.466772.6 schema:alternateName India Meteorological Department, 110001, New Delhi, India
    265 schema:name India Meteorological Department, 110001, New Delhi, India
    266 rdf:type schema:Organization
    267 grid-institutes:grid.8663.b schema:alternateName Atmospheric Research Team, Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 11810, Athens, Greece
    268 schema:name Atmospheric Research Team, Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 11810, Athens, Greece
    269 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...