Synthesis and characterization of exfoliated biochar from four agricultural feedstock View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Shuvrodeb Roy, Uday Kumar, Pradip Bhattacharyya

ABSTRACT

Highly porous biochar (BC) structures have been prepared from inexpensive biomasses like rice straw, bamboo, sugarcane waste, and corn cob via a slow pyrolysis technique in nitrogenous atmosphere. A surface engineering technique has been applied to enhance the surface-to-volume ratio of each biochar sample and finally compared its characteristics through standard surface and elemental characterization techniques, viz. CHN (carbon, hydrogen, and nitrogen), FTIR (Fourier transform infrared spectroscopy), BET (Brunauer-Emmett-Teller), and SEM (scanning electron microscopy). All the biochar samples were observed to be highly carbonized and aromatized. Exfoliated structures were found to contain more elemental carbon (34.14-77.32%) than its native form (30.92-74.46%). Aromatic hydrocarbon, aromatic C=C, aromatics, aliphatic C-O, aliphatic hydrocarbon, and H-bonded OH groups were found to predominate in the surface of biochar structures independent of their precursor composition and extent of exfoliation. SEM micrographic images clearly ensured about the unoriented sheets like the morphology of different biochar samples. Although no significant structural difference was found to exist depending on their precursor compositions, quantitative enhancement of porosity was found to be observed after exfoliation. Both native (240.65 m2/g) and exfoliated (712.89 m2/g) biochars derived from sugarcane wastes were observed to have a maximum surface area in comparison to the biochars derived from rice straw (native, 22.08 m2/g; exfoliated, 29.92 m2/g), bamboo (native, 42.08 m2/g; exfoliated, 248.38 m2/g), and corn cob (native, 136.62 m2/g; exfoliated, 221.71 m2/g). Exfoliated biochars were found to be consistently more potent in comparison to its native form as per our comparative characterizations performed so far. More... »

PAGES

7272-7276

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11356-018-04117-7

DOI

http://dx.doi.org/10.1007/s11356-018-04117-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111541087

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30661167


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Indian Statistical Institute", 
          "id": "https://www.grid.ac/institutes/grid.39953.35", 
          "name": [
            "Agricultural and Ecological Research Unit, Indian Statistical Institute, 700108, Kolkata, West Bengal, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roy", 
        "givenName": "Shuvrodeb", 
        "id": "sg:person.01263212464.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263212464.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Maulana Azad National Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.419487.7", 
          "name": [
            "Department of Physics, National Institute of Technology, 831014, Jamshedpur, Jharkhand, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kumar", 
        "givenName": "Uday", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Statistical Institute", 
          "id": "https://www.grid.ac/institutes/grid.39953.35", 
          "name": [
            "Agricultural and Ecological Research Unit, Indian Statistical Institute, 815301, Giridih, Jharkhand, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhattacharyya", 
        "givenName": "Pradip", 
        "id": "sg:person.0631552577.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631552577.96"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11104-009-0050-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000171597", 
          "https://doi.org/10.1007/s11104-009-0050-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11104-009-0050-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000171597", 
          "https://doi.org/10.1007/s11104-009-0050-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11104-009-0050-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000171597", 
          "https://doi.org/10.1007/s11104-009-0050-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/442624a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003082478", 
          "https://doi.org/10.1038/442624a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/442624a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003082478", 
          "https://doi.org/10.1038/442624a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/442624a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003082478", 
          "https://doi.org/10.1038/442624a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4ta06110a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004095151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/gcbb.12030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004873573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2016.04.093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017201797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es101337x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018772007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es101337x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018772007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jaap.2014.03.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018833691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cej.2013.10.081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023140091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agee.2014.04.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024651309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2013.03.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031164266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.still.2011.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032674026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jiec.2015.09.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048306562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.indcrop.2007.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050227793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf104206c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055909127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf104206c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055909127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0176884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085394137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10643389.2017.1418580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100200196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2018.01.054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100563642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11356-018-1460-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101038683", 
          "https://doi.org/10.1007/s11356-018-1460-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11356-018-2521-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105010384", 
          "https://doi.org/10.1007/s11356-018-2521-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2018.07.402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105899853"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "Highly porous biochar (BC) structures have been prepared from inexpensive biomasses like rice straw, bamboo, sugarcane waste, and corn cob via a slow pyrolysis technique in nitrogenous atmosphere. A surface engineering technique has been applied to enhance the surface-to-volume ratio of each biochar sample and finally compared its characteristics through standard surface and elemental characterization techniques, viz. CHN (carbon, hydrogen, and nitrogen), FTIR (Fourier transform infrared spectroscopy), BET (Brunauer-Emmett-Teller), and SEM (scanning electron microscopy). All the biochar samples were observed to be highly carbonized and aromatized. Exfoliated structures were found to contain more elemental carbon (34.14-77.32%) than its native form (30.92-74.46%). Aromatic hydrocarbon, aromatic C=C, aromatics, aliphatic C-O, aliphatic hydrocarbon, and H-bonded OH groups were found to predominate in the surface of biochar structures independent of their precursor composition and extent of exfoliation. SEM micrographic images clearly ensured about the unoriented sheets like the morphology of different biochar samples. Although no significant structural difference was found to exist depending on their precursor compositions, quantitative enhancement of porosity was found to be observed after exfoliation. Both native (240.65\u00a0m2/g) and exfoliated (712.89\u00a0m2/g) biochars derived from sugarcane wastes were observed to have a maximum surface area in comparison to the biochars derived from rice straw (native, 22.08\u00a0m2/g; exfoliated, 29.92\u00a0m2/g), bamboo (native, 42.08\u00a0m2/g; exfoliated, 248.38\u00a0m2/g), and corn cob (native, 136.62\u00a0m2/g; exfoliated, 221.71\u00a0m2/g). Exfoliated biochars were found to be consistently more potent in comparison to its native form as per our comparative characterizations performed so far.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11356-018-04117-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1113424", 
        "issn": [
          "0944-1344", 
          "1614-7499"
        ], 
        "name": "Environmental Science and Pollution Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "name": "Synthesis and characterization of exfoliated biochar from four agricultural feedstock", 
    "pagination": "7272-7276", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "91acc3311b467c0c14ac31ca8af99f615473039dbe5ad594358f9d0665fc9098"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30661167"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9441769"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11356-018-04117-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111541087"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11356-018-04117-7", 
      "https://app.dimensions.ai/details/publication/pub.1111541087"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78965_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11356-018-04117-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11356-018-04117-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11356-018-04117-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11356-018-04117-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11356-018-04117-7'


 

This table displays all metadata directly associated to this object as RDF triples.

150 TRIPLES      21 PREDICATES      49 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11356-018-04117-7 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N7eb976e7ca1b444fb73a9b52911d8d55
4 schema:citation sg:pub.10.1007/s11104-009-0050-x
5 sg:pub.10.1007/s11356-018-1460-1
6 sg:pub.10.1007/s11356-018-2521-1
7 sg:pub.10.1038/442624a
8 https://doi.org/10.1016/j.agee.2014.04.010
9 https://doi.org/10.1016/j.biortech.2013.03.057
10 https://doi.org/10.1016/j.biortech.2016.04.093
11 https://doi.org/10.1016/j.cej.2013.10.081
12 https://doi.org/10.1016/j.indcrop.2007.03.004
13 https://doi.org/10.1016/j.jaap.2014.03.017
14 https://doi.org/10.1016/j.jiec.2015.09.029
15 https://doi.org/10.1016/j.scitotenv.2018.01.054
16 https://doi.org/10.1016/j.scitotenv.2018.07.402
17 https://doi.org/10.1016/j.still.2011.01.002
18 https://doi.org/10.1021/es101337x
19 https://doi.org/10.1021/jf104206c
20 https://doi.org/10.1039/c4ta06110a
21 https://doi.org/10.1080/10643389.2017.1418580
22 https://doi.org/10.1111/gcbb.12030
23 https://doi.org/10.1371/journal.pone.0176884
24 schema:datePublished 2019-03
25 schema:datePublishedReg 2019-03-01
26 schema:description Highly porous biochar (BC) structures have been prepared from inexpensive biomasses like rice straw, bamboo, sugarcane waste, and corn cob via a slow pyrolysis technique in nitrogenous atmosphere. A surface engineering technique has been applied to enhance the surface-to-volume ratio of each biochar sample and finally compared its characteristics through standard surface and elemental characterization techniques, viz. CHN (carbon, hydrogen, and nitrogen), FTIR (Fourier transform infrared spectroscopy), BET (Brunauer-Emmett-Teller), and SEM (scanning electron microscopy). All the biochar samples were observed to be highly carbonized and aromatized. Exfoliated structures were found to contain more elemental carbon (34.14-77.32%) than its native form (30.92-74.46%). Aromatic hydrocarbon, aromatic C=C, aromatics, aliphatic C-O, aliphatic hydrocarbon, and H-bonded OH groups were found to predominate in the surface of biochar structures independent of their precursor composition and extent of exfoliation. SEM micrographic images clearly ensured about the unoriented sheets like the morphology of different biochar samples. Although no significant structural difference was found to exist depending on their precursor compositions, quantitative enhancement of porosity was found to be observed after exfoliation. Both native (240.65 m<sup>2</sup>/g) and exfoliated (712.89 m<sup>2</sup>/g) biochars derived from sugarcane wastes were observed to have a maximum surface area in comparison to the biochars derived from rice straw (native, 22.08 m<sup>2</sup>/g; exfoliated, 29.92 m<sup>2</sup>/g), bamboo (native, 42.08 m<sup>2</sup>/g; exfoliated, 248.38 m<sup>2</sup>/g), and corn cob (native, 136.62 m<sup>2</sup>/g; exfoliated, 221.71 m<sup>2</sup>/g). Exfoliated biochars were found to be consistently more potent in comparison to its native form as per our comparative characterizations performed so far.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf N47b3bcceb3844b509295eb4181e1e2e8
31 Nfc0e84122c974c61977c6e510edfc2a6
32 sg:journal.1113424
33 schema:name Synthesis and characterization of exfoliated biochar from four agricultural feedstock
34 schema:pagination 7272-7276
35 schema:productId N0e629d1807794e3898785742160029d0
36 N7fca847d5ce64361906078d80e0f46d3
37 N8f4940ef34fa4131a357db237fc3f5ab
38 Nb28193a3a8e74282ab241ad9617e81ea
39 Nfb2bae1978c748c0a63f43d57141c67c
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111541087
41 https://doi.org/10.1007/s11356-018-04117-7
42 schema:sdDatePublished 2019-04-11T13:20
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher Nfdb8f50a102c443cb94a87bc63219a3f
45 schema:url https://link.springer.com/10.1007%2Fs11356-018-04117-7
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N0e629d1807794e3898785742160029d0 schema:name doi
50 schema:value 10.1007/s11356-018-04117-7
51 rdf:type schema:PropertyValue
52 N344a52887e72457b9428f87b3e5f217a schema:affiliation https://www.grid.ac/institutes/grid.419487.7
53 schema:familyName Kumar
54 schema:givenName Uday
55 rdf:type schema:Person
56 N472a90cfb77043bda9efb5def28d0ff3 rdf:first sg:person.0631552577.96
57 rdf:rest rdf:nil
58 N47b3bcceb3844b509295eb4181e1e2e8 schema:volumeNumber 26
59 rdf:type schema:PublicationVolume
60 N7eb976e7ca1b444fb73a9b52911d8d55 rdf:first sg:person.01263212464.27
61 rdf:rest Ne52decbf69454e2cab6693e39e1d9390
62 N7fca847d5ce64361906078d80e0f46d3 schema:name nlm_unique_id
63 schema:value 9441769
64 rdf:type schema:PropertyValue
65 N8f4940ef34fa4131a357db237fc3f5ab schema:name dimensions_id
66 schema:value pub.1111541087
67 rdf:type schema:PropertyValue
68 Nb28193a3a8e74282ab241ad9617e81ea schema:name pubmed_id
69 schema:value 30661167
70 rdf:type schema:PropertyValue
71 Ne52decbf69454e2cab6693e39e1d9390 rdf:first N344a52887e72457b9428f87b3e5f217a
72 rdf:rest N472a90cfb77043bda9efb5def28d0ff3
73 Nfb2bae1978c748c0a63f43d57141c67c schema:name readcube_id
74 schema:value 91acc3311b467c0c14ac31ca8af99f615473039dbe5ad594358f9d0665fc9098
75 rdf:type schema:PropertyValue
76 Nfc0e84122c974c61977c6e510edfc2a6 schema:issueNumber 7
77 rdf:type schema:PublicationIssue
78 Nfdb8f50a102c443cb94a87bc63219a3f schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
81 schema:name Chemical Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
84 schema:name Physical Chemistry (incl. Structural)
85 rdf:type schema:DefinedTerm
86 sg:journal.1113424 schema:issn 0944-1344
87 1614-7499
88 schema:name Environmental Science and Pollution Research
89 rdf:type schema:Periodical
90 sg:person.01263212464.27 schema:affiliation https://www.grid.ac/institutes/grid.39953.35
91 schema:familyName Roy
92 schema:givenName Shuvrodeb
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263212464.27
94 rdf:type schema:Person
95 sg:person.0631552577.96 schema:affiliation https://www.grid.ac/institutes/grid.39953.35
96 schema:familyName Bhattacharyya
97 schema:givenName Pradip
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631552577.96
99 rdf:type schema:Person
100 sg:pub.10.1007/s11104-009-0050-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000171597
101 https://doi.org/10.1007/s11104-009-0050-x
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s11356-018-1460-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101038683
104 https://doi.org/10.1007/s11356-018-1460-1
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s11356-018-2521-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105010384
107 https://doi.org/10.1007/s11356-018-2521-1
108 rdf:type schema:CreativeWork
109 sg:pub.10.1038/442624a schema:sameAs https://app.dimensions.ai/details/publication/pub.1003082478
110 https://doi.org/10.1038/442624a
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.agee.2014.04.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024651309
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.biortech.2013.03.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031164266
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.biortech.2016.04.093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017201797
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.cej.2013.10.081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023140091
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.indcrop.2007.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050227793
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.jaap.2014.03.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018833691
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.jiec.2015.09.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048306562
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.scitotenv.2018.01.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100563642
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.scitotenv.2018.07.402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105899853
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.still.2011.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032674026
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1021/es101337x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018772007
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1021/jf104206c schema:sameAs https://app.dimensions.ai/details/publication/pub.1055909127
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1039/c4ta06110a schema:sameAs https://app.dimensions.ai/details/publication/pub.1004095151
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1080/10643389.2017.1418580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100200196
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1111/gcbb.12030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004873573
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1371/journal.pone.0176884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085394137
143 rdf:type schema:CreativeWork
144 https://www.grid.ac/institutes/grid.39953.35 schema:alternateName Indian Statistical Institute
145 schema:name Agricultural and Ecological Research Unit, Indian Statistical Institute, 700108, Kolkata, West Bengal, India
146 Agricultural and Ecological Research Unit, Indian Statistical Institute, 815301, Giridih, Jharkhand, India
147 rdf:type schema:Organization
148 https://www.grid.ac/institutes/grid.419487.7 schema:alternateName Maulana Azad National Institute of Technology
149 schema:name Department of Physics, National Institute of Technology, 831014, Jamshedpur, Jharkhand, India
150 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...