Visualization and quantification of transparent exopolymer particles (TEP) in freshwater using an auto-imaging approach View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-06-06

AUTHORS

Nguyen Thi Thuy, Chih-Pin Huang, Jr-Lin Lin

ABSTRACT

Most water sources are full of microscopic transparent exopolymer particles (TEP), which are currently regarded as a major initiator of biofilm formation. This study developed and applied an auto-imaging FlowCAM-based method for online observation and quantification of TEP in freshwater. Samples from reservoirs in Taiwan with a wide range of water quality were directly used to develop this methodology. Factors that potentially affect the measurement were tested. The results showed that characteristics of the particles measured instantaneously after staining samples with Alcian blue differed significantly from those measured at steady states, as a result of particle aggregation. Compared to traditional microscopic methods, this proposed method provides a simple, rapid, and less labor-intensive analysis with particle morphological conservation and a large number of particle attributes. By overcoming the limitations from the former, this technique would offer routine monitoring of these transparent particles from various freshwater sources and feed water in membrane filtration, hence facilitating the use of TEP as a critical parameter for biofouling investigation in water treatment. Application of the method for Taiwan reservoirs showed a wide variety of morphological forms of TEP and its abundance, up to 25,000 ppm. More... »

PAGES

17358-17372

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11356-017-9292-y

DOI

http://dx.doi.org/10.1007/s11356-017-9292-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085886597

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28589275


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biofouling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Filtration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fresh Water", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polysaccharides", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Taiwan", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Faculty of Biotechnology & Environmental Engineering, Ho Chi Minh City University of Food Industry, Ho Chi Minh City, Vietnam", 
          "id": "http://www.grid.ac/institutes/grid.491482.2", 
          "name": [
            "Institute of Environmental Engineering, National Chiao Tung University, 300, Hsinchu, Taiwan", 
            "Faculty of Biotechnology & Environmental Engineering, Ho Chi Minh City University of Food Industry, Ho Chi Minh City, Vietnam"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thuy", 
        "givenName": "Nguyen Thi", 
        "id": "sg:person.01165403063.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165403063.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Environmental Engineering, National Chiao Tung University, 300, Hsinchu, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.260539.b", 
          "name": [
            "Institute of Environmental Engineering, National Chiao Tung University, 300, Hsinchu, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Chih-Pin", 
        "id": "sg:person.012752703465.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012752703465.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.411649.f", 
          "name": [
            "Institute of Environmental Engineering, National Chiao Tung University, 300, Hsinchu, Taiwan", 
            "Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Jr-Lin", 
        "id": "sg:person.0723773607.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723773607.64"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00253-013-4979-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035638308", 
          "https://doi.org/10.1007/s00253-013-4979-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00027-010-0127-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037794991", 
          "https://doi.org/10.1007/s00027-010-0127-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00027-010-0147-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044585432", 
          "https://doi.org/10.1007/s00027-010-0147-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1208/s12248-013-9522-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013317423", 
          "https://doi.org/10.1208/s12248-013-9522-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-06-06", 
    "datePublishedReg": "2017-06-06", 
    "description": "Most water sources are full of microscopic transparent exopolymer particles (TEP), which are currently regarded as a major initiator of biofilm formation. This study developed and applied an auto-imaging FlowCAM-based method for online observation and quantification of TEP in freshwater. Samples from reservoirs in Taiwan with a wide range of water quality were directly used to develop this methodology. Factors that potentially affect the measurement were tested. The results showed that characteristics of the particles measured instantaneously after staining samples with Alcian blue differed significantly from those measured at steady states, as a result of particle aggregation. Compared to traditional microscopic methods, this proposed method provides a simple, rapid, and less labor-intensive analysis with particle morphological conservation and a large number of particle attributes. By overcoming the limitations from the former, this technique would offer routine monitoring of these transparent particles from various freshwater sources and feed water in membrane filtration, hence facilitating the use of TEP as a critical parameter for biofouling investigation in water treatment. Application of the method for Taiwan reservoirs showed a wide variety of morphological forms of TEP and its abundance, up to 25,000\u00a0ppm.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11356-017-9292-y", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1113424", 
        "issn": [
          "0944-1344", 
          "1614-7499"
        ], 
        "name": "Environmental Science and Pollution Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "21", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "keywords": [
      "transparent exopolymer particles", 
      "exopolymer particles", 
      "Taiwan reservoirs", 
      "water treatment", 
      "membrane filtration", 
      "particle attributes", 
      "particle aggregation", 
      "critical parameters", 
      "most water sources", 
      "transparent particles", 
      "freshwater sources", 
      "particles", 
      "freshwater", 
      "water quality", 
      "reservoir", 
      "water sources", 
      "steady state", 
      "wide range", 
      "method", 
      "online observation", 
      "water", 
      "applications", 
      "parameters", 
      "source", 
      "measurements", 
      "filtration", 
      "results", 
      "microscopic methods", 
      "ppm", 
      "range", 
      "characteristics", 
      "technique", 
      "wide variety", 
      "monitoring", 
      "quantification", 
      "methodology", 
      "labor-intensive analysis", 
      "investigation", 
      "large number", 
      "samples", 
      "blue", 
      "biofilm formation", 
      "formation", 
      "limitations", 
      "approach", 
      "visualization", 
      "quality", 
      "analysis", 
      "use", 
      "FlowCAM", 
      "observations", 
      "routine monitoring", 
      "traditional microscopic methods", 
      "initiator", 
      "state", 
      "number", 
      "aggregation", 
      "attributes", 
      "study", 
      "variety", 
      "form", 
      "conservation", 
      "factors", 
      "morphological forms", 
      "treatment", 
      "Taiwan", 
      "morphological conservation", 
      "major initiator", 
      "abundance", 
      "alcian blue"
    ], 
    "name": "Visualization and quantification of transparent exopolymer particles (TEP) in freshwater using an auto-imaging approach", 
    "pagination": "17358-17372", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085886597"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11356-017-9292-y"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28589275"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11356-017-9292-y", 
      "https://app.dimensions.ai/details/publication/pub.1085886597"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_730.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11356-017-9292-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11356-017-9292-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11356-017-9292-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11356-017-9292-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11356-017-9292-y'


 

This table displays all metadata directly associated to this object as RDF triples.

194 TRIPLES      22 PREDICATES      106 URIs      93 LITERALS      12 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11356-017-9292-y schema:about N42ead7031e24498cb891ae057f7061d8
2 N6040e6a75c6c4d9a83351cb9ada8dfda
3 N825682cd222a4092ac0e35da99ef8c13
4 N9b6a7bad9b3746b9bb4659699aa78543
5 Nc317cb79d6c64776979fae2a9242c351
6 anzsrc-for:03
7 anzsrc-for:05
8 anzsrc-for:06
9 schema:author N2b22d1dd20ab4a2997c9ad431c79a263
10 schema:citation sg:pub.10.1007/s00027-010-0127-x
11 sg:pub.10.1007/s00027-010-0147-6
12 sg:pub.10.1007/s00253-013-4979-6
13 sg:pub.10.1208/s12248-013-9522-2
14 schema:datePublished 2017-06-06
15 schema:datePublishedReg 2017-06-06
16 schema:description Most water sources are full of microscopic transparent exopolymer particles (TEP), which are currently regarded as a major initiator of biofilm formation. This study developed and applied an auto-imaging FlowCAM-based method for online observation and quantification of TEP in freshwater. Samples from reservoirs in Taiwan with a wide range of water quality were directly used to develop this methodology. Factors that potentially affect the measurement were tested. The results showed that characteristics of the particles measured instantaneously after staining samples with Alcian blue differed significantly from those measured at steady states, as a result of particle aggregation. Compared to traditional microscopic methods, this proposed method provides a simple, rapid, and less labor-intensive analysis with particle morphological conservation and a large number of particle attributes. By overcoming the limitations from the former, this technique would offer routine monitoring of these transparent particles from various freshwater sources and feed water in membrane filtration, hence facilitating the use of TEP as a critical parameter for biofouling investigation in water treatment. Application of the method for Taiwan reservoirs showed a wide variety of morphological forms of TEP and its abundance, up to 25,000 ppm.
17 schema:genre article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N6037dae8fa314650a880123896ee75ed
21 N6399a9ddc05f44b5a8bc4798f7d2a93d
22 sg:journal.1113424
23 schema:keywords FlowCAM
24 Taiwan
25 Taiwan reservoirs
26 abundance
27 aggregation
28 alcian blue
29 analysis
30 applications
31 approach
32 attributes
33 biofilm formation
34 blue
35 characteristics
36 conservation
37 critical parameters
38 exopolymer particles
39 factors
40 filtration
41 form
42 formation
43 freshwater
44 freshwater sources
45 initiator
46 investigation
47 labor-intensive analysis
48 large number
49 limitations
50 major initiator
51 measurements
52 membrane filtration
53 method
54 methodology
55 microscopic methods
56 monitoring
57 morphological conservation
58 morphological forms
59 most water sources
60 number
61 observations
62 online observation
63 parameters
64 particle aggregation
65 particle attributes
66 particles
67 ppm
68 quality
69 quantification
70 range
71 reservoir
72 results
73 routine monitoring
74 samples
75 source
76 state
77 steady state
78 study
79 technique
80 traditional microscopic methods
81 transparent exopolymer particles
82 transparent particles
83 treatment
84 use
85 variety
86 visualization
87 water
88 water quality
89 water sources
90 water treatment
91 wide range
92 wide variety
93 schema:name Visualization and quantification of transparent exopolymer particles (TEP) in freshwater using an auto-imaging approach
94 schema:pagination 17358-17372
95 schema:productId N4557b01445334915960b65c472842bd7
96 N558b697657fa4fcd847d552d65b59f5b
97 N7f349be7ea9f412e9f5ce2745ba2634c
98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085886597
99 https://doi.org/10.1007/s11356-017-9292-y
100 schema:sdDatePublished 2022-05-10T10:19
101 schema:sdLicense https://scigraph.springernature.com/explorer/license/
102 schema:sdPublisher N48552f820ef34db985eecbde10f8a30f
103 schema:url https://doi.org/10.1007/s11356-017-9292-y
104 sgo:license sg:explorer/license/
105 sgo:sdDataset articles
106 rdf:type schema:ScholarlyArticle
107 N2b22d1dd20ab4a2997c9ad431c79a263 rdf:first sg:person.01165403063.07
108 rdf:rest N4a544f9805214ab186a4aa1d73d92162
109 N42ead7031e24498cb891ae057f7061d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Biofouling
111 rdf:type schema:DefinedTerm
112 N4557b01445334915960b65c472842bd7 schema:name doi
113 schema:value 10.1007/s11356-017-9292-y
114 rdf:type schema:PropertyValue
115 N48552f820ef34db985eecbde10f8a30f schema:name Springer Nature - SN SciGraph project
116 rdf:type schema:Organization
117 N4a544f9805214ab186a4aa1d73d92162 rdf:first sg:person.012752703465.45
118 rdf:rest N9653cb7b94ba42098e9231c9b7049910
119 N558b697657fa4fcd847d552d65b59f5b schema:name dimensions_id
120 schema:value pub.1085886597
121 rdf:type schema:PropertyValue
122 N6037dae8fa314650a880123896ee75ed schema:issueNumber 21
123 rdf:type schema:PublicationIssue
124 N6040e6a75c6c4d9a83351cb9ada8dfda schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Filtration
126 rdf:type schema:DefinedTerm
127 N6399a9ddc05f44b5a8bc4798f7d2a93d schema:volumeNumber 24
128 rdf:type schema:PublicationVolume
129 N7f349be7ea9f412e9f5ce2745ba2634c schema:name pubmed_id
130 schema:value 28589275
131 rdf:type schema:PropertyValue
132 N825682cd222a4092ac0e35da99ef8c13 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Fresh Water
134 rdf:type schema:DefinedTerm
135 N9653cb7b94ba42098e9231c9b7049910 rdf:first sg:person.0723773607.64
136 rdf:rest rdf:nil
137 N9b6a7bad9b3746b9bb4659699aa78543 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Taiwan
139 rdf:type schema:DefinedTerm
140 Nc317cb79d6c64776979fae2a9242c351 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Polysaccharides
142 rdf:type schema:DefinedTerm
143 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
144 schema:name Chemical Sciences
145 rdf:type schema:DefinedTerm
146 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
147 schema:name Environmental Sciences
148 rdf:type schema:DefinedTerm
149 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
150 schema:name Biological Sciences
151 rdf:type schema:DefinedTerm
152 sg:journal.1113424 schema:issn 0944-1344
153 1614-7499
154 schema:name Environmental Science and Pollution Research
155 schema:publisher Springer Nature
156 rdf:type schema:Periodical
157 sg:person.01165403063.07 schema:affiliation grid-institutes:grid.491482.2
158 schema:familyName Thuy
159 schema:givenName Nguyen Thi
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165403063.07
161 rdf:type schema:Person
162 sg:person.012752703465.45 schema:affiliation grid-institutes:grid.260539.b
163 schema:familyName Huang
164 schema:givenName Chih-Pin
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012752703465.45
166 rdf:type schema:Person
167 sg:person.0723773607.64 schema:affiliation grid-institutes:grid.411649.f
168 schema:familyName Lin
169 schema:givenName Jr-Lin
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723773607.64
171 rdf:type schema:Person
172 sg:pub.10.1007/s00027-010-0127-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037794991
173 https://doi.org/10.1007/s00027-010-0127-x
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/s00027-010-0147-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044585432
176 https://doi.org/10.1007/s00027-010-0147-6
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/s00253-013-4979-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035638308
179 https://doi.org/10.1007/s00253-013-4979-6
180 rdf:type schema:CreativeWork
181 sg:pub.10.1208/s12248-013-9522-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013317423
182 https://doi.org/10.1208/s12248-013-9522-2
183 rdf:type schema:CreativeWork
184 grid-institutes:grid.260539.b schema:alternateName Institute of Environmental Engineering, National Chiao Tung University, 300, Hsinchu, Taiwan
185 schema:name Institute of Environmental Engineering, National Chiao Tung University, 300, Hsinchu, Taiwan
186 rdf:type schema:Organization
187 grid-institutes:grid.411649.f schema:alternateName Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
188 schema:name Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
189 Institute of Environmental Engineering, National Chiao Tung University, 300, Hsinchu, Taiwan
190 rdf:type schema:Organization
191 grid-institutes:grid.491482.2 schema:alternateName Faculty of Biotechnology & Environmental Engineering, Ho Chi Minh City University of Food Industry, Ho Chi Minh City, Vietnam
192 schema:name Faculty of Biotechnology & Environmental Engineering, Ho Chi Minh City University of Food Industry, Ho Chi Minh City, Vietnam
193 Institute of Environmental Engineering, National Chiao Tung University, 300, Hsinchu, Taiwan
194 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...