Treatment of secondary effluent by sequential combination of photocatalytic oxidation with ceramic membrane filtration View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-05-01

AUTHORS

Lili Song, Bo Zhu, Veeriah Jegatheesan, Stephen Gray, Mikel Duke, Shobha Muthukumaran

ABSTRACT

The aim of the present work was to experimentally evaluate an alternative advanced wastewater treatment system, which combines the action of photocatalytic oxidation with ceramic membrane filtration. Experiments were carried out using laboratory scale TiO2/UV photocatalytic reactor and tubular ceramic microfiltration (CMF) system to treat the secondary effluent (SE). A 100-nm pore size CMF membrane was investigated in cross flow mode under constant transmembrane pressure of 20 kPa. The results show that specific flux decline of CMF membrane with and without TiO2/UV photocatalytic treatment was 30 and 50%, respectively, after 60 min of filtration. Data evaluation revealed that the adsorption of organic compounds onto the TiO2 particles was dependent on the pH of the suspension and was considerably higher at low pH. The liquid chromatography-organic carbon detector (LC-OCD) technique was used to characterise the dissolved organic matter (DOM) present in the SE and was monitored following photocatalysis and CMF. The results showed that there was no removal of biopolymers and slight removal of humics, building blocks and the other oxidation by-products after TiO2/UV photocatalytic treatment. This result suggested that the various ions present in the SE act as scavengers, which considerably decrease the efficiency of the photocatalytic oxidation reactions. On the other hand, the CMF was effective for removing 50% of biopolymers with no further removal of other organic components after photocatalytic treatment. Thus, the quantity of biopolymers in SE has an apparent correlation with the filterability of water samples in CMF. More... »

PAGES

5191-5202

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11356-017-9070-x

DOI

http://dx.doi.org/10.1007/s11356-017-9070-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085111510

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28462432


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0399", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adsorption", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biopolymers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ceramics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Filtration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Membranes, Artificial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oxidation-Reduction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Photochemical Processes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Titanium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ultraviolet Rays", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Water Pollutants, Chemical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Water Purification", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Sustainability and Innovation, Victoria University, PO Box 14428, 8001, Melbourne, VIC, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1019.9", 
          "name": [
            "College of Biological and Environmental Engineering, Zhejiang University of Technology, 310032, Hangzhou, People\u2019s Republic of China", 
            "Institute for Sustainability and Innovation, Victoria University, PO Box 14428, 8001, Melbourne, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Song", 
        "givenName": "Lili", 
        "id": "sg:person.0706041114.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706041114.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Engineering and Science, Victoria University, PO Box 14428, 8001, Melbourne, VIC, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1019.9", 
          "name": [
            "Institute for Sustainability and Innovation, Victoria University, PO Box 14428, 8001, Melbourne, VIC, Australia", 
            "College of Engineering and Science, Victoria University, PO Box 14428, 8001, Melbourne, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Bo", 
        "id": "sg:person.01360407334.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360407334.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Engineering, RMIT university, 3000, Melbourne, VIC, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1017.7", 
          "name": [
            "School of Engineering, RMIT university, 3000, Melbourne, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jegatheesan", 
        "givenName": "Veeriah", 
        "id": "sg:person.01331715207.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331715207.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Engineering and Science, Victoria University, PO Box 14428, 8001, Melbourne, VIC, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1019.9", 
          "name": [
            "Institute for Sustainability and Innovation, Victoria University, PO Box 14428, 8001, Melbourne, VIC, Australia", 
            "College of Engineering and Science, Victoria University, PO Box 14428, 8001, Melbourne, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gray", 
        "givenName": "Stephen", 
        "id": "sg:person.01350042756.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350042756.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Engineering and Science, Victoria University, PO Box 14428, 8001, Melbourne, VIC, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1019.9", 
          "name": [
            "Institute for Sustainability and Innovation, Victoria University, PO Box 14428, 8001, Melbourne, VIC, Australia", 
            "College of Engineering and Science, Victoria University, PO Box 14428, 8001, Melbourne, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Duke", 
        "givenName": "Mikel", 
        "id": "sg:person.012324047757.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012324047757.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Engineering and Science, Victoria University, PO Box 14428, 8001, Melbourne, VIC, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1019.9", 
          "name": [
            "Institute for Sustainability and Innovation, Victoria University, PO Box 14428, 8001, Melbourne, VIC, Australia", 
            "College of Engineering and Science, Victoria University, PO Box 14428, 8001, Melbourne, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Muthukumaran", 
        "givenName": "Shobha", 
        "id": "sg:person.014707107577.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014707107577.11"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11051-008-9446-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042947525", 
          "https://doi.org/10.1007/s11051-008-9446-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11356-016-7390-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001401450", 
          "https://doi.org/10.1007/s11356-016-7390-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s100980000080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007895851", 
          "https://doi.org/10.1007/s100980000080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13201-016-0483-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017473267", 
          "https://doi.org/10.1007/s13201-016-0483-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-05-01", 
    "datePublishedReg": "2017-05-01", 
    "description": "The aim of the present work was to experimentally evaluate an alternative advanced wastewater treatment system, which combines the action of photocatalytic oxidation with ceramic membrane filtration. Experiments were carried out using laboratory scale TiO2/UV photocatalytic reactor and tubular ceramic microfiltration (CMF) system to treat the secondary effluent (SE). A 100-nm pore size CMF membrane was investigated in cross flow mode under constant transmembrane pressure of 20\u00a0kPa. The results show that specific flux decline of CMF membrane with and without TiO2/UV photocatalytic treatment was 30 and 50%, respectively, after 60\u00a0min of filtration. Data evaluation revealed that the adsorption of organic compounds onto the TiO2 particles was dependent on the pH of the suspension and was considerably higher at low pH. The liquid chromatography-organic carbon detector (LC-OCD) technique was used to characterise the dissolved organic matter (DOM) present in the SE and was monitored following photocatalysis and CMF. The results showed that there was no removal of biopolymers and slight removal of humics, building blocks and the other oxidation by-products after TiO2/UV photocatalytic treatment. This result suggested that the various ions present in the SE act as scavengers, which considerably decrease the efficiency of the photocatalytic oxidation reactions. On the other hand, the CMF was effective for removing 50% of biopolymers with no further removal of other organic components after photocatalytic treatment. Thus, the quantity of biopolymers in SE has an apparent correlation with the filterability of water samples in CMF.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11356-017-9070-x", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1113424", 
        "issn": [
          "0944-1344", 
          "1614-7499"
        ], 
        "name": "Environmental Science and Pollution Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "25"
      }
    ], 
    "keywords": [
      "dissolved organic matter", 
      "ceramic membrane filtration", 
      "photocatalytic treatment", 
      "photocatalytic oxidation", 
      "liquid chromatography-organic carbon detector (LC-OCD) technique", 
      "secondary effluent", 
      "photocatalytic oxidation reaction", 
      "advanced wastewater treatment system", 
      "membrane filtration", 
      "oxidation reaction", 
      "wastewater treatment systems", 
      "cross flow mode", 
      "min of filtration", 
      "removal of biopolymers", 
      "organic compounds", 
      "constant transmembrane pressure", 
      "TiO2 particles", 
      "specific flux decline", 
      "organic components", 
      "water samples", 
      "photocatalytic reactor", 
      "microfiltration system", 
      "flux decline", 
      "transmembrane pressure", 
      "slight removal", 
      "building blocks", 
      "oxidation", 
      "flow mode", 
      "biopolymers", 
      "treatment system", 
      "organic matter", 
      "further removal", 
      "effluent", 
      "adsorption", 
      "present work", 
      "photocatalysis", 
      "filtration", 
      "humics", 
      "ions", 
      "detector technique", 
      "removal", 
      "compounds", 
      "reaction", 
      "reactor", 
      "data evaluation", 
      "pH", 
      "particles", 
      "membrane", 
      "scavengers", 
      "products", 
      "filterability", 
      "suspension", 
      "efficiency", 
      "system", 
      "SE Act", 
      "results", 
      "sequential combination", 
      "samples", 
      "mode", 
      "pressure", 
      "technique", 
      "work", 
      "experiments", 
      "block", 
      "quantity", 
      "components", 
      "min", 
      "matter", 
      "combination", 
      "apparent correlation", 
      "evaluation", 
      "treatment", 
      "CMF", 
      "hand", 
      "correlation", 
      "act", 
      "aim", 
      "action", 
      "decline", 
      "alternative advanced wastewater treatment system", 
      "laboratory scale TiO2/UV photocatalytic reactor", 
      "scale TiO2/UV photocatalytic reactor", 
      "TiO2/UV photocatalytic reactor", 
      "UV photocatalytic reactor", 
      "tubular ceramic microfiltration (CMF) system", 
      "ceramic microfiltration (CMF) system", 
      "pore size CMF membrane", 
      "size CMF membrane", 
      "CMF membrane", 
      "TiO2/UV photocatalytic treatment", 
      "UV photocatalytic treatment", 
      "chromatography-organic carbon detector (LC-OCD) technique", 
      "carbon detector (LC-OCD) technique", 
      "quantity of biopolymers"
    ], 
    "name": "Treatment of secondary effluent by sequential combination of photocatalytic oxidation with ceramic membrane filtration", 
    "pagination": "5191-5202", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085111510"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11356-017-9070-x"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28462432"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11356-017-9070-x", 
      "https://app.dimensions.ai/details/publication/pub.1085111510"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_731.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11356-017-9070-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11356-017-9070-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11356-017-9070-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11356-017-9070-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11356-017-9070-x'


 

This table displays all metadata directly associated to this object as RDF triples.

257 TRIPLES      22 PREDICATES      135 URIs      123 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11356-017-9070-x schema:about N0b813b6fd1bd47a79bc722cd70fb6f60
2 N1390bb7bd64a4576959181815f9fadf4
3 N3f3d5010d5ab40e4aa147f125112358d
4 N4842fe7b9e634357bc55803f1d5cc492
5 N4a8414142f004de08f33084a3261c2c8
6 N5c1ed746d5fb4afe859883d36b866ac1
7 N5d11bf3c4d0b4f74b51b56f459e265fb
8 N7583b3e0611d4d7aad821ccfa8edcba7
9 Na344d41b95854ee7a6b3ba4116d4e5b9
10 Na35c292b81d542cba69cc4c84644836a
11 Nea8ed9a51f1f4b37af754c01ba90653a
12 anzsrc-for:03
13 anzsrc-for:0399
14 schema:author N4485f9e511844d6590c1407471742243
15 schema:citation sg:pub.10.1007/s100980000080
16 sg:pub.10.1007/s11051-008-9446-4
17 sg:pub.10.1007/s11356-016-7390-x
18 sg:pub.10.1007/s13201-016-0483-3
19 schema:datePublished 2017-05-01
20 schema:datePublishedReg 2017-05-01
21 schema:description The aim of the present work was to experimentally evaluate an alternative advanced wastewater treatment system, which combines the action of photocatalytic oxidation with ceramic membrane filtration. Experiments were carried out using laboratory scale TiO2/UV photocatalytic reactor and tubular ceramic microfiltration (CMF) system to treat the secondary effluent (SE). A 100-nm pore size CMF membrane was investigated in cross flow mode under constant transmembrane pressure of 20 kPa. The results show that specific flux decline of CMF membrane with and without TiO2/UV photocatalytic treatment was 30 and 50%, respectively, after 60 min of filtration. Data evaluation revealed that the adsorption of organic compounds onto the TiO2 particles was dependent on the pH of the suspension and was considerably higher at low pH. The liquid chromatography-organic carbon detector (LC-OCD) technique was used to characterise the dissolved organic matter (DOM) present in the SE and was monitored following photocatalysis and CMF. The results showed that there was no removal of biopolymers and slight removal of humics, building blocks and the other oxidation by-products after TiO2/UV photocatalytic treatment. This result suggested that the various ions present in the SE act as scavengers, which considerably decrease the efficiency of the photocatalytic oxidation reactions. On the other hand, the CMF was effective for removing 50% of biopolymers with no further removal of other organic components after photocatalytic treatment. Thus, the quantity of biopolymers in SE has an apparent correlation with the filterability of water samples in CMF.
22 schema:genre article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N47f50ac203a94188af646d86638409d2
26 N8dc5c915c20b4a918da70b9cd7c1960d
27 sg:journal.1113424
28 schema:keywords CMF
29 CMF membrane
30 SE Act
31 TiO2 particles
32 TiO2/UV photocatalytic reactor
33 TiO2/UV photocatalytic treatment
34 UV photocatalytic reactor
35 UV photocatalytic treatment
36 act
37 action
38 adsorption
39 advanced wastewater treatment system
40 aim
41 alternative advanced wastewater treatment system
42 apparent correlation
43 biopolymers
44 block
45 building blocks
46 carbon detector (LC-OCD) technique
47 ceramic membrane filtration
48 ceramic microfiltration (CMF) system
49 chromatography-organic carbon detector (LC-OCD) technique
50 combination
51 components
52 compounds
53 constant transmembrane pressure
54 correlation
55 cross flow mode
56 data evaluation
57 decline
58 detector technique
59 dissolved organic matter
60 efficiency
61 effluent
62 evaluation
63 experiments
64 filterability
65 filtration
66 flow mode
67 flux decline
68 further removal
69 hand
70 humics
71 ions
72 laboratory scale TiO2/UV photocatalytic reactor
73 liquid chromatography-organic carbon detector (LC-OCD) technique
74 matter
75 membrane
76 membrane filtration
77 microfiltration system
78 min
79 min of filtration
80 mode
81 organic components
82 organic compounds
83 organic matter
84 oxidation
85 oxidation reaction
86 pH
87 particles
88 photocatalysis
89 photocatalytic oxidation
90 photocatalytic oxidation reaction
91 photocatalytic reactor
92 photocatalytic treatment
93 pore size CMF membrane
94 present work
95 pressure
96 products
97 quantity
98 quantity of biopolymers
99 reaction
100 reactor
101 removal
102 removal of biopolymers
103 results
104 samples
105 scale TiO2/UV photocatalytic reactor
106 scavengers
107 secondary effluent
108 sequential combination
109 size CMF membrane
110 slight removal
111 specific flux decline
112 suspension
113 system
114 technique
115 transmembrane pressure
116 treatment
117 treatment system
118 tubular ceramic microfiltration (CMF) system
119 wastewater treatment systems
120 water samples
121 work
122 schema:name Treatment of secondary effluent by sequential combination of photocatalytic oxidation with ceramic membrane filtration
123 schema:pagination 5191-5202
124 schema:productId N4d14d70a0f184ed29139ac3887ec1f3c
125 N70620d247a7d4feb8024d22cdeeeec45
126 Nb33503ef97aa4b3080241c80633190f8
127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085111510
128 https://doi.org/10.1007/s11356-017-9070-x
129 schema:sdDatePublished 2022-01-01T18:42
130 schema:sdLicense https://scigraph.springernature.com/explorer/license/
131 schema:sdPublisher N9730b6ec291a4694a1efa958056c589b
132 schema:url https://doi.org/10.1007/s11356-017-9070-x
133 sgo:license sg:explorer/license/
134 sgo:sdDataset articles
135 rdf:type schema:ScholarlyArticle
136 N0b813b6fd1bd47a79bc722cd70fb6f60 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Water Purification
138 rdf:type schema:DefinedTerm
139 N1390bb7bd64a4576959181815f9fadf4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Ultraviolet Rays
141 rdf:type schema:DefinedTerm
142 N3f3d5010d5ab40e4aa147f125112358d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Water Pollutants, Chemical
144 rdf:type schema:DefinedTerm
145 N43fd07736be14fcfb8e11a950107c24d rdf:first sg:person.01350042756.87
146 rdf:rest N7ec14ee0f69f4410bb5147ed5a6fb40f
147 N4485f9e511844d6590c1407471742243 rdf:first sg:person.0706041114.22
148 rdf:rest N621f9e593c254c128b06a3d7f0f819cc
149 N47f50ac203a94188af646d86638409d2 schema:issueNumber 6
150 rdf:type schema:PublicationIssue
151 N4842fe7b9e634357bc55803f1d5cc492 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Biopolymers
153 rdf:type schema:DefinedTerm
154 N4a8414142f004de08f33084a3261c2c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Adsorption
156 rdf:type schema:DefinedTerm
157 N4d14d70a0f184ed29139ac3887ec1f3c schema:name doi
158 schema:value 10.1007/s11356-017-9070-x
159 rdf:type schema:PropertyValue
160 N58ed96b4bb244115a5917ebede3ef95e rdf:first sg:person.01331715207.17
161 rdf:rest N43fd07736be14fcfb8e11a950107c24d
162 N5c1ed746d5fb4afe859883d36b866ac1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Ceramics
164 rdf:type schema:DefinedTerm
165 N5d11bf3c4d0b4f74b51b56f459e265fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Oxidation-Reduction
167 rdf:type schema:DefinedTerm
168 N621f9e593c254c128b06a3d7f0f819cc rdf:first sg:person.01360407334.19
169 rdf:rest N58ed96b4bb244115a5917ebede3ef95e
170 N70620d247a7d4feb8024d22cdeeeec45 schema:name pubmed_id
171 schema:value 28462432
172 rdf:type schema:PropertyValue
173 N7583b3e0611d4d7aad821ccfa8edcba7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Membranes, Artificial
175 rdf:type schema:DefinedTerm
176 N7ec14ee0f69f4410bb5147ed5a6fb40f rdf:first sg:person.012324047757.28
177 rdf:rest Nad973159c34946b0a8cd6d115ef70a3b
178 N8dc5c915c20b4a918da70b9cd7c1960d schema:volumeNumber 25
179 rdf:type schema:PublicationVolume
180 N9730b6ec291a4694a1efa958056c589b schema:name Springer Nature - SN SciGraph project
181 rdf:type schema:Organization
182 Na344d41b95854ee7a6b3ba4116d4e5b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Filtration
184 rdf:type schema:DefinedTerm
185 Na35c292b81d542cba69cc4c84644836a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
186 schema:name Photochemical Processes
187 rdf:type schema:DefinedTerm
188 Nad973159c34946b0a8cd6d115ef70a3b rdf:first sg:person.014707107577.11
189 rdf:rest rdf:nil
190 Nb33503ef97aa4b3080241c80633190f8 schema:name dimensions_id
191 schema:value pub.1085111510
192 rdf:type schema:PropertyValue
193 Nea8ed9a51f1f4b37af754c01ba90653a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
194 schema:name Titanium
195 rdf:type schema:DefinedTerm
196 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
197 schema:name Chemical Sciences
198 rdf:type schema:DefinedTerm
199 anzsrc-for:0399 schema:inDefinedTermSet anzsrc-for:
200 schema:name Other Chemical Sciences
201 rdf:type schema:DefinedTerm
202 sg:journal.1113424 schema:issn 0944-1344
203 1614-7499
204 schema:name Environmental Science and Pollution Research
205 schema:publisher Springer Nature
206 rdf:type schema:Periodical
207 sg:person.012324047757.28 schema:affiliation grid-institutes:grid.1019.9
208 schema:familyName Duke
209 schema:givenName Mikel
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012324047757.28
211 rdf:type schema:Person
212 sg:person.01331715207.17 schema:affiliation grid-institutes:grid.1017.7
213 schema:familyName Jegatheesan
214 schema:givenName Veeriah
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331715207.17
216 rdf:type schema:Person
217 sg:person.01350042756.87 schema:affiliation grid-institutes:grid.1019.9
218 schema:familyName Gray
219 schema:givenName Stephen
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350042756.87
221 rdf:type schema:Person
222 sg:person.01360407334.19 schema:affiliation grid-institutes:grid.1019.9
223 schema:familyName Zhu
224 schema:givenName Bo
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360407334.19
226 rdf:type schema:Person
227 sg:person.014707107577.11 schema:affiliation grid-institutes:grid.1019.9
228 schema:familyName Muthukumaran
229 schema:givenName Shobha
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014707107577.11
231 rdf:type schema:Person
232 sg:person.0706041114.22 schema:affiliation grid-institutes:grid.1019.9
233 schema:familyName Song
234 schema:givenName Lili
235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706041114.22
236 rdf:type schema:Person
237 sg:pub.10.1007/s100980000080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007895851
238 https://doi.org/10.1007/s100980000080
239 rdf:type schema:CreativeWork
240 sg:pub.10.1007/s11051-008-9446-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042947525
241 https://doi.org/10.1007/s11051-008-9446-4
242 rdf:type schema:CreativeWork
243 sg:pub.10.1007/s11356-016-7390-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001401450
244 https://doi.org/10.1007/s11356-016-7390-x
245 rdf:type schema:CreativeWork
246 sg:pub.10.1007/s13201-016-0483-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017473267
247 https://doi.org/10.1007/s13201-016-0483-3
248 rdf:type schema:CreativeWork
249 grid-institutes:grid.1017.7 schema:alternateName School of Engineering, RMIT university, 3000, Melbourne, VIC, Australia
250 schema:name School of Engineering, RMIT university, 3000, Melbourne, VIC, Australia
251 rdf:type schema:Organization
252 grid-institutes:grid.1019.9 schema:alternateName College of Engineering and Science, Victoria University, PO Box 14428, 8001, Melbourne, VIC, Australia
253 Institute for Sustainability and Innovation, Victoria University, PO Box 14428, 8001, Melbourne, VIC, Australia
254 schema:name College of Biological and Environmental Engineering, Zhejiang University of Technology, 310032, Hangzhou, People’s Republic of China
255 College of Engineering and Science, Victoria University, PO Box 14428, 8001, Melbourne, VIC, Australia
256 Institute for Sustainability and Innovation, Victoria University, PO Box 14428, 8001, Melbourne, VIC, Australia
257 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...