Evaluation and localization of an artificial drainage network by 3D time-lapse electrical resistivity tomography View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-08

AUTHORS

T Jouen, R Clément, H Henine, C Chaumont, B Vincent, J Tournebize

ABSTRACT

In France, 10 % of total arable land is equipped with subsurface drainage systems, to control winter and spring waterlogging due to a temporary perched water table. Most of these systems were installed in the1980s and have aged since then and may now need maintenance. Sometimes, the location of the systems is known, but the standard situation in France is that the original as-built master sketches are no longer available. Performance assessment of drainage systems and curative actions are complicated since drain location is unknown. In this article, the authors test the application of a non-destructive drain detection method which consists in water injection at the outfall of the drainage network combined with time-lapse electrical resistivity tomography (ERT) monitoring. To assess the performance of this methodology, which consists in measuring electrical resistivity from electrodes placed at the nodes of a 1.2-m regular mesh, the authors interpreted the signal using a two-step approach. The first step is based on 3D ERT numerical modelling during a scenario of surface infiltration processes (forward modelling followed by geophysical inversion); this step optimizes the ERT method for locating the infiltration at depths below 1 m. The second step is the validation of the results obtained by numerical modelling with an experimental data set, using water injection into the drainage network combined with time-lapse ERT monitoring on an experimental field site. The results showed the relevance of time-lapse ERT monitoring on a small agricultural plot for locating the drainage network. The numerical results also showed several limitations of the combined methodology: (i) it is necessary to use an electrode spacing unit less than 1.20 m, which does not facilitate investigation on large agriculture plots, (ii) measurements must be taken when resistivity contrast is the strongest between the infiltration area and the soil and (iii) the volume of water needed for injection can limit the extension of the method. More... »

PAGES

23502-23514

References to SciGraph publications

  • 1995-08. Parameter sensitivity and field evaluation of SIDRA model in IRRIGATION AND DRAINAGE SYSTEMS
  • 1989-06. Drainage design practices in France in IRRIGATION AND DRAINAGE SYSTEMS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11356-016-7366-x

    DOI

    http://dx.doi.org/10.1007/s11356-016-7366-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1028012823

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/27566158


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0907", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Environmental Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National Research Institute of Science and Technology for Environment and Agriculture", 
              "id": "https://www.grid.ac/institutes/grid.48142.3b", 
              "name": [
                "IRSTEA, Hydrosystems and Bioprocesses Antony, HBAN, 1 rue Pierre Gilles de Gennes, 10030Cedex, 92761, Antony, CS, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jouen", 
            "givenName": "T", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Research Institute of Science and Technology for Environment and Agriculture", 
              "id": "https://www.grid.ac/institutes/grid.48142.3b", 
              "name": [
                "IRSTEA, Hydrosystems and Bioprocesses Antony, HBAN, 1 rue Pierre Gilles de Gennes, 10030Cedex, 92761, Antony, CS, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cl\u00e9ment", 
            "givenName": "R", 
            "id": "sg:person.010420433325.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010420433325.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Research Institute of Science and Technology for Environment and Agriculture", 
              "id": "https://www.grid.ac/institutes/grid.48142.3b", 
              "name": [
                "IRSTEA, Hydrosystems and Bioprocesses Antony, HBAN, 1 rue Pierre Gilles de Gennes, 10030Cedex, 92761, Antony, CS, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Henine", 
            "givenName": "H", 
            "id": "sg:person.012036520156.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012036520156.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Research Institute of Science and Technology for Environment and Agriculture", 
              "id": "https://www.grid.ac/institutes/grid.48142.3b", 
              "name": [
                "IRSTEA, Hydrosystems and Bioprocesses Antony, HBAN, 1 rue Pierre Gilles de Gennes, 10030Cedex, 92761, Antony, CS, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chaumont", 
            "givenName": "C", 
            "id": "sg:person.01162721372.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162721372.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Research Institute of Science and Technology for Environment and Agriculture", 
              "id": "https://www.grid.ac/institutes/grid.48142.3b", 
              "name": [
                "IRSTEA, Hydrosystems and Bioprocesses Antony, HBAN, 1 rue Pierre Gilles de Gennes, 10030Cedex, 92761, Antony, CS, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vincent", 
            "givenName": "B", 
            "id": "sg:person.012221162015.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012221162015.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Research Institute of Science and Technology for Environment and Agriculture", 
              "id": "https://www.grid.ac/institutes/grid.48142.3b", 
              "name": [
                "IRSTEA, Hydrosystems and Bioprocesses Antony, HBAN, 1 rue Pierre Gilles de Gennes, 10030Cedex, 92761, Antony, CS, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tournebize", 
            "givenName": "J", 
            "id": "sg:person.01114606172.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114606172.53"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1029/wr016i003p00574", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000506477"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/hyp.6608", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000540409"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2002wr001581", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004584827"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jappgeo.2013.09.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005193068"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1071/eg05281", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007638463"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00880868", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008375267", 
              "https://doi.org/10.1007/bf00880868"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/hyp.9224", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008434574"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jhydrol.2009.10.032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010739835"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jhydrol.2009.11.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012047568"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jappgeo.2014.09.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015704093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02576968", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016336858", 
              "https://doi.org/10.1007/bf02576968"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02576968", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016336858", 
              "https://doi.org/10.1007/bf02576968"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.agwat.2008.10.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019776230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.still.2004.10.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021475630"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-246x.2006.03011.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023836774"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0012-821x(03)00241-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024065799"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0012-821x(03)00241-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024065799"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-246x.2006.03010.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025653136"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.crte.2009.07.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036422197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1190/1.1444148", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037255156"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jappgeo.2011.04.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042158613"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-246x.1994.tb02122.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044083384"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-246x.1994.tb02122.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044083384"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10643389409388459", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045922102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1190/geo2011-0313.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046386010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4141/cjss89-023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047279222"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.wasman.2009.10.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049995102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jappgeo.2007.12.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050350490"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/agro:2004030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056944326"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1190/1.1437878", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064139389"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.13031/2013.16067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064890979"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.13031/2013.17915", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064891470"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.13031/2013.18461", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064891626"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2113/jeeg15.3.119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068924686"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2118/942054-g", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068962415"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2136/vzj2008.0152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069054084"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3997/1873-0604.2014034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071814152"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-08", 
        "datePublishedReg": "2018-08-01", 
        "description": "In France, 10\u00a0% of total arable land is equipped with subsurface drainage systems, to control winter and spring waterlogging due to a temporary perched water table. Most of these systems were installed in the1980s and have aged since then and may now need maintenance. Sometimes, the location of the systems is known, but the standard situation in France is that the original as-built master sketches are no longer available. Performance assessment of drainage systems and curative actions are complicated since drain location is unknown. In this article, the authors test the application of a non-destructive drain detection method which consists in water injection at the outfall of the drainage network combined with time-lapse electrical resistivity tomography (ERT) monitoring. To assess the performance of this methodology, which consists in measuring electrical resistivity from electrodes placed at the nodes of a 1.2-m regular mesh, the authors interpreted the signal using a two-step approach. The first step is based on 3D ERT numerical modelling during a scenario of surface infiltration processes (forward modelling followed by geophysical inversion); this step optimizes the ERT method for locating the infiltration at depths below 1\u00a0m. The second step is the validation of the results obtained by numerical modelling with an experimental data set, using water injection into the drainage network combined with time-lapse ERT monitoring on an experimental field site. The results showed the relevance of time-lapse ERT monitoring on a small agricultural plot for locating the drainage network. The numerical results also showed several limitations of the combined methodology: (i) it is necessary to use an electrode spacing unit less than 1.20\u00a0m, which does not facilitate investigation on large agriculture plots, (ii) measurements must be taken when resistivity contrast is the strongest between the infiltration area and the soil and (iii) the volume of water needed for injection can limit the extension of the method.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11356-016-7366-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1113424", 
            "issn": [
              "0944-1344", 
              "1614-7499"
            ], 
            "name": "Environmental Science and Pollution Research", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "24", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "25"
          }
        ], 
        "name": "Evaluation and localization of an artificial drainage network by 3D time-lapse electrical resistivity tomography", 
        "pagination": "23502-23514", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "8571edfffe17e33c4457f7d48aa1eb57e67361c0942ea46d8b8e3fbc11da67eb"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "27566158"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9441769"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11356-016-7366-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1028012823"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11356-016-7366-x", 
          "https://app.dimensions.ai/details/publication/pub.1028012823"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:53", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000588.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs11356-016-7366-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11356-016-7366-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11356-016-7366-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11356-016-7366-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11356-016-7366-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    207 TRIPLES      21 PREDICATES      63 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11356-016-7366-x schema:about anzsrc-for:09
    2 anzsrc-for:0907
    3 schema:author N01cb7ab934de4fbca9791874a775cce5
    4 schema:citation sg:pub.10.1007/bf00880868
    5 sg:pub.10.1007/bf02576968
    6 https://doi.org/10.1002/hyp.6608
    7 https://doi.org/10.1002/hyp.9224
    8 https://doi.org/10.1016/j.agwat.2008.10.002
    9 https://doi.org/10.1016/j.crte.2009.07.005
    10 https://doi.org/10.1016/j.jappgeo.2007.12.004
    11 https://doi.org/10.1016/j.jappgeo.2011.04.010
    12 https://doi.org/10.1016/j.jappgeo.2013.09.005
    13 https://doi.org/10.1016/j.jappgeo.2014.09.024
    14 https://doi.org/10.1016/j.jhydrol.2009.10.032
    15 https://doi.org/10.1016/j.jhydrol.2009.11.007
    16 https://doi.org/10.1016/j.still.2004.10.004
    17 https://doi.org/10.1016/j.wasman.2009.10.002
    18 https://doi.org/10.1016/s0012-821x(03)00241-3
    19 https://doi.org/10.1029/2002wr001581
    20 https://doi.org/10.1029/wr016i003p00574
    21 https://doi.org/10.1051/agro:2004030
    22 https://doi.org/10.1071/eg05281
    23 https://doi.org/10.1080/10643389409388459
    24 https://doi.org/10.1111/j.1365-246x.1994.tb02122.x
    25 https://doi.org/10.1111/j.1365-246x.2006.03010.x
    26 https://doi.org/10.1111/j.1365-246x.2006.03011.x
    27 https://doi.org/10.1190/1.1437878
    28 https://doi.org/10.1190/1.1444148
    29 https://doi.org/10.1190/geo2011-0313.1
    30 https://doi.org/10.13031/2013.16067
    31 https://doi.org/10.13031/2013.17915
    32 https://doi.org/10.13031/2013.18461
    33 https://doi.org/10.2113/jeeg15.3.119
    34 https://doi.org/10.2118/942054-g
    35 https://doi.org/10.2136/vzj2008.0152
    36 https://doi.org/10.3997/1873-0604.2014034
    37 https://doi.org/10.4141/cjss89-023
    38 schema:datePublished 2018-08
    39 schema:datePublishedReg 2018-08-01
    40 schema:description In France, 10 % of total arable land is equipped with subsurface drainage systems, to control winter and spring waterlogging due to a temporary perched water table. Most of these systems were installed in the1980s and have aged since then and may now need maintenance. Sometimes, the location of the systems is known, but the standard situation in France is that the original as-built master sketches are no longer available. Performance assessment of drainage systems and curative actions are complicated since drain location is unknown. In this article, the authors test the application of a non-destructive drain detection method which consists in water injection at the outfall of the drainage network combined with time-lapse electrical resistivity tomography (ERT) monitoring. To assess the performance of this methodology, which consists in measuring electrical resistivity from electrodes placed at the nodes of a 1.2-m regular mesh, the authors interpreted the signal using a two-step approach. The first step is based on 3D ERT numerical modelling during a scenario of surface infiltration processes (forward modelling followed by geophysical inversion); this step optimizes the ERT method for locating the infiltration at depths below 1 m. The second step is the validation of the results obtained by numerical modelling with an experimental data set, using water injection into the drainage network combined with time-lapse ERT monitoring on an experimental field site. The results showed the relevance of time-lapse ERT monitoring on a small agricultural plot for locating the drainage network. The numerical results also showed several limitations of the combined methodology: (i) it is necessary to use an electrode spacing unit less than 1.20 m, which does not facilitate investigation on large agriculture plots, (ii) measurements must be taken when resistivity contrast is the strongest between the infiltration area and the soil and (iii) the volume of water needed for injection can limit the extension of the method.
    41 schema:genre research_article
    42 schema:inLanguage en
    43 schema:isAccessibleForFree false
    44 schema:isPartOf N09026cb065294faf98fc1460bb28cc98
    45 Ne4181d955dc748c0987420c3b57da772
    46 sg:journal.1113424
    47 schema:name Evaluation and localization of an artificial drainage network by 3D time-lapse electrical resistivity tomography
    48 schema:pagination 23502-23514
    49 schema:productId N215b4b40a9044a618c8e6f66bdaadf8c
    50 N2b98d98d55bc4763a802c44a20a1da20
    51 N38d7774179654e01a4e01441e68a4403
    52 N8d7a20fae3844733ac22860fb42ac02d
    53 Ndca6b109fd7646e682e32ff7dd7b7402
    54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028012823
    55 https://doi.org/10.1007/s11356-016-7366-x
    56 schema:sdDatePublished 2019-04-10T16:53
    57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    58 schema:sdPublisher N61b6b896691e4970bb07a67ffd9eedb7
    59 schema:url https://link.springer.com/10.1007%2Fs11356-016-7366-x
    60 sgo:license sg:explorer/license/
    61 sgo:sdDataset articles
    62 rdf:type schema:ScholarlyArticle
    63 N01cb7ab934de4fbca9791874a775cce5 rdf:first N81ba69f014634702b29fa1e0cc20f77a
    64 rdf:rest N49afda4e5ceb49dc818edbe979a28dc8
    65 N06d94bcdaeec4bc0b8376613aece0f6c rdf:first sg:person.01114606172.53
    66 rdf:rest rdf:nil
    67 N09026cb065294faf98fc1460bb28cc98 schema:issueNumber 24
    68 rdf:type schema:PublicationIssue
    69 N215b4b40a9044a618c8e6f66bdaadf8c schema:name dimensions_id
    70 schema:value pub.1028012823
    71 rdf:type schema:PropertyValue
    72 N2b98d98d55bc4763a802c44a20a1da20 schema:name pubmed_id
    73 schema:value 27566158
    74 rdf:type schema:PropertyValue
    75 N38d7774179654e01a4e01441e68a4403 schema:name doi
    76 schema:value 10.1007/s11356-016-7366-x
    77 rdf:type schema:PropertyValue
    78 N43dac0b3093442d59a1aa8ac6ab8061f rdf:first sg:person.01162721372.06
    79 rdf:rest N85e3f7cc9b9c46158f172c744f3e3b71
    80 N49afda4e5ceb49dc818edbe979a28dc8 rdf:first sg:person.010420433325.18
    81 rdf:rest N795fc3da759b44b5bbfa3b166b22b8e5
    82 N61b6b896691e4970bb07a67ffd9eedb7 schema:name Springer Nature - SN SciGraph project
    83 rdf:type schema:Organization
    84 N795fc3da759b44b5bbfa3b166b22b8e5 rdf:first sg:person.012036520156.46
    85 rdf:rest N43dac0b3093442d59a1aa8ac6ab8061f
    86 N81ba69f014634702b29fa1e0cc20f77a schema:affiliation https://www.grid.ac/institutes/grid.48142.3b
    87 schema:familyName Jouen
    88 schema:givenName T
    89 rdf:type schema:Person
    90 N85e3f7cc9b9c46158f172c744f3e3b71 rdf:first sg:person.012221162015.40
    91 rdf:rest N06d94bcdaeec4bc0b8376613aece0f6c
    92 N8d7a20fae3844733ac22860fb42ac02d schema:name readcube_id
    93 schema:value 8571edfffe17e33c4457f7d48aa1eb57e67361c0942ea46d8b8e3fbc11da67eb
    94 rdf:type schema:PropertyValue
    95 Ndca6b109fd7646e682e32ff7dd7b7402 schema:name nlm_unique_id
    96 schema:value 9441769
    97 rdf:type schema:PropertyValue
    98 Ne4181d955dc748c0987420c3b57da772 schema:volumeNumber 25
    99 rdf:type schema:PublicationVolume
    100 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    101 schema:name Engineering
    102 rdf:type schema:DefinedTerm
    103 anzsrc-for:0907 schema:inDefinedTermSet anzsrc-for:
    104 schema:name Environmental Engineering
    105 rdf:type schema:DefinedTerm
    106 sg:journal.1113424 schema:issn 0944-1344
    107 1614-7499
    108 schema:name Environmental Science and Pollution Research
    109 rdf:type schema:Periodical
    110 sg:person.010420433325.18 schema:affiliation https://www.grid.ac/institutes/grid.48142.3b
    111 schema:familyName Clément
    112 schema:givenName R
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010420433325.18
    114 rdf:type schema:Person
    115 sg:person.01114606172.53 schema:affiliation https://www.grid.ac/institutes/grid.48142.3b
    116 schema:familyName Tournebize
    117 schema:givenName J
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114606172.53
    119 rdf:type schema:Person
    120 sg:person.01162721372.06 schema:affiliation https://www.grid.ac/institutes/grid.48142.3b
    121 schema:familyName Chaumont
    122 schema:givenName C
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162721372.06
    124 rdf:type schema:Person
    125 sg:person.012036520156.46 schema:affiliation https://www.grid.ac/institutes/grid.48142.3b
    126 schema:familyName Henine
    127 schema:givenName H
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012036520156.46
    129 rdf:type schema:Person
    130 sg:person.012221162015.40 schema:affiliation https://www.grid.ac/institutes/grid.48142.3b
    131 schema:familyName Vincent
    132 schema:givenName B
    133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012221162015.40
    134 rdf:type schema:Person
    135 sg:pub.10.1007/bf00880868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008375267
    136 https://doi.org/10.1007/bf00880868
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/bf02576968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016336858
    139 https://doi.org/10.1007/bf02576968
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1002/hyp.6608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000540409
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1002/hyp.9224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008434574
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1016/j.agwat.2008.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019776230
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1016/j.crte.2009.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036422197
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1016/j.jappgeo.2007.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050350490
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1016/j.jappgeo.2011.04.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042158613
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1016/j.jappgeo.2013.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005193068
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1016/j.jappgeo.2014.09.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015704093
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1016/j.jhydrol.2009.10.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010739835
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1016/j.jhydrol.2009.11.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012047568
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1016/j.still.2004.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021475630
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1016/j.wasman.2009.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049995102
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1016/s0012-821x(03)00241-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024065799
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1029/2002wr001581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004584827
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1029/wr016i003p00574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000506477
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1051/agro:2004030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056944326
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1071/eg05281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007638463
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1080/10643389409388459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045922102
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1111/j.1365-246x.1994.tb02122.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044083384
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1111/j.1365-246x.2006.03010.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025653136
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1111/j.1365-246x.2006.03011.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023836774
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1190/1.1437878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064139389
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1190/1.1444148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037255156
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1190/geo2011-0313.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046386010
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.13031/2013.16067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064890979
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.13031/2013.17915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064891470
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.13031/2013.18461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064891626
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.2113/jeeg15.3.119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068924686
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.2118/942054-g schema:sameAs https://app.dimensions.ai/details/publication/pub.1068962415
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.2136/vzj2008.0152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069054084
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.3997/1873-0604.2014034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071814152
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.4141/cjss89-023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047279222
    204 rdf:type schema:CreativeWork
    205 https://www.grid.ac/institutes/grid.48142.3b schema:alternateName National Research Institute of Science and Technology for Environment and Agriculture
    206 schema:name IRSTEA, Hydrosystems and Bioprocesses Antony, HBAN, 1 rue Pierre Gilles de Gennes, 10030Cedex, 92761, Antony, CS, France
    207 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...