Simplified continuous simulation model for investigating effects of controlled drainage on long-term soil moisture dynamics with a shallow groundwater table View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-04-29

AUTHORS

Huaiwei Sun, Juxiu Tong, Wenbing Luo, Xiugui Wang, Jinzhong Yang

ABSTRACT

Accurate modeling of soil water content is required for a reasonable prediction of crop yield and of agrochemical leaching in the field. However, complex mathematical models faced the difficult-to-calibrate parameters and the distinct knowledge between the developers and users. In this study, a deterministic model is presented and is used to investigate the effects of controlled drainage on soil moisture dynamics in a shallow groundwater area. This simplified one-dimensional model is formulated to simulate soil moisture in the field on a daily basis and takes into account only the vertical hydrological processes. A linear assumption is proposed and is used to calculate the capillary rise from the groundwater. The pipe drainage volume is calculated by using a steady-state approximation method and the leakage rate is calculated as a function of soil moisture. The model is successfully calibrated by using field experiment data from four different pipe drainage treatments with several field observations. The model was validated by comparing the simulations with observed soil water content during the experimental seasons. The comparison results demonstrated the robustness and effectiveness of the model in the prediction of average soil moisture values. The input data required to run the model are widely available and can be measured easily in the field. It is observed that controlled drainage results in lower groundwater contribution to the root zone and lower depth of percolation to the groundwater, thus helping in the maintenance of a low level of soil salinity in the root zone. More... »

PAGES

15565-15573

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11356-016-6747-5

DOI

http://dx.doi.org/10.1007/s11356-016-6747-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019401001

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27126870


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0503", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Soil Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Agrochemicals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Calibration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Groundwater", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Salinity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Soil", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Water", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Water Pollutants, Chemical", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of hydropower and information engineering, Huazhong University of Science & Technology, 430074, Wuhan, China", 
          "id": "http://www.grid.ac/institutes/grid.33199.31", 
          "name": [
            "School of hydropower and information engineering, Huazhong University of Science & Technology, 430074, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Huaiwei", 
        "id": "sg:person.01106735177.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106735177.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Key Laboratory of Groundwater Circulation and Evolution, Ministry of Education, China University of Geosciences, 100083, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.419897.a", 
          "name": [
            "Key Laboratory of Groundwater Circulation and Evolution, Ministry of Education, China University of Geosciences, 100083, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tong", 
        "givenName": "Juxiu", 
        "id": "sg:person.010314752347.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010314752347.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China", 
          "id": "http://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luo", 
        "givenName": "Wenbing", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of agricultural water conservancy, The Yangtze River academy of Sciences, 430010, Wuhan, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute of agricultural water conservancy, The Yangtze River academy of Sciences, 430010, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Xiugui", 
        "id": "sg:person.0615050455.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615050455.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of agricultural water conservancy, The Yangtze River academy of Sciences, 430010, Wuhan, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute of agricultural water conservancy, The Yangtze River academy of Sciences, 430010, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Jinzhong", 
        "id": "sg:person.014731165631.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014731165631.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11356-016-6452-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015500152", 
          "https://doi.org/10.1007/s11356-016-6452-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11356-015-4860-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008406210", 
          "https://doi.org/10.1007/s11356-015-4860-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1064229315070091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000702871", 
          "https://doi.org/10.1134/s1064229315070091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1626-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053136439", 
          "https://doi.org/10.1007/978-1-4612-1626-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-04-29", 
    "datePublishedReg": "2016-04-29", 
    "description": "Accurate modeling of soil water content is required for a reasonable prediction of crop yield and of agrochemical leaching in the field. However, complex mathematical models faced the difficult-to-calibrate parameters and the distinct knowledge between the developers and users. In this study, a deterministic model is presented and is used to investigate the effects of controlled drainage on soil moisture dynamics in a shallow groundwater area. This simplified one-dimensional model is formulated to simulate soil moisture in the field on a daily basis and takes into account only the vertical hydrological processes. A linear assumption is proposed and is used to calculate the capillary rise from the groundwater. The pipe drainage volume is calculated by using a steady-state approximation method and the leakage rate is calculated as a function of soil moisture. The model is successfully calibrated by using field experiment data from four different pipe drainage treatments with several field observations. The model was validated by comparing the simulations with observed soil water content during the experimental seasons. The comparison results demonstrated the robustness and effectiveness of the model in the prediction of average soil moisture values. The input data required to run the model are widely available and can be measured easily in the field. It is observed that controlled drainage results in lower groundwater contribution to the root zone and lower depth of percolation to the groundwater, thus helping in the maintenance of a low level of soil salinity in the root zone.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11356-016-6747-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7184597", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8255051", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8264116", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1113424", 
        "issn": [
          "0944-1344", 
          "1614-7499"
        ], 
        "name": "Environmental Science and Pollution Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "15", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "keywords": [
      "soil moisture dynamics", 
      "moisture dynamics", 
      "soil water content", 
      "soil moisture", 
      "root zone", 
      "observed soil water contents", 
      "shallow groundwater areas", 
      "shallow groundwater table", 
      "soil moisture values", 
      "continuous simulation model", 
      "groundwater contribution", 
      "hydrological processes", 
      "water content", 
      "groundwater areas", 
      "groundwater table", 
      "field experiment data", 
      "moisture values", 
      "field observations", 
      "capillary rise", 
      "one-dimensional model", 
      "steady state approximation method", 
      "drainage results", 
      "groundwater", 
      "soil salinity", 
      "lower depths", 
      "agrochemical leaching", 
      "zone", 
      "moisture", 
      "input data", 
      "drainage", 
      "drainage treatment", 
      "reasonable predictions", 
      "crop yield", 
      "salinity", 
      "deterministic model", 
      "depth", 
      "accurate modeling", 
      "drainage volume", 
      "season", 
      "daily basis", 
      "complex mathematical models", 
      "linear assumption", 
      "experiment data", 
      "simulation model", 
      "leaching", 
      "percolation", 
      "dynamics", 
      "mathematical model", 
      "experimental seasons", 
      "leakage rate", 
      "comparison results", 
      "model", 
      "prediction", 
      "data", 
      "area", 
      "content", 
      "field", 
      "rise", 
      "modeling", 
      "table", 
      "contribution", 
      "simulations", 
      "approximation method", 
      "distinct knowledge", 
      "robustness", 
      "yield", 
      "process", 
      "volume", 
      "results", 
      "values", 
      "parameters", 
      "low levels", 
      "assumption", 
      "basis", 
      "effect", 
      "rate", 
      "method", 
      "account", 
      "study", 
      "effectiveness", 
      "levels", 
      "knowledge", 
      "observations", 
      "maintenance", 
      "function", 
      "treatment", 
      "users", 
      "developers"
    ], 
    "name": "Simplified continuous simulation model for investigating effects of controlled drainage on long-term soil moisture dynamics with a shallow groundwater table", 
    "pagination": "15565-15573", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019401001"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11356-016-6747-5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27126870"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11356-016-6747-5", 
      "https://app.dimensions.ai/details/publication/pub.1019401001"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_685.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11356-016-6747-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11356-016-6747-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11356-016-6747-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11356-016-6747-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11356-016-6747-5'


 

This table displays all metadata directly associated to this object as RDF triples.

240 TRIPLES      22 PREDICATES      126 URIs      114 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11356-016-6747-5 schema:about N20159fc087c54d1d9463e63778b53651
2 N217e9785b2864f2fac0f5cc980dd112a
3 N26c8faa03b6e4744abf4cdb8094b2037
4 N5c8d21b36db845389a9cd3cbf959ac27
5 N714e2c6622c6400ab27450f23c2a1cce
6 N9ae77653b80e4e2bb75a624a587cb7aa
7 N9c47805029d54c338da3e643070b27ff
8 Ncff61dd660fa4fe188407025a7d8fe42
9 anzsrc-for:05
10 anzsrc-for:0503
11 schema:author Nc8abc736cabd41b0b819c86783487a9b
12 schema:citation sg:pub.10.1007/978-1-4612-1626-1
13 sg:pub.10.1007/s11356-015-4860-5
14 sg:pub.10.1007/s11356-016-6452-4
15 sg:pub.10.1134/s1064229315070091
16 schema:datePublished 2016-04-29
17 schema:datePublishedReg 2016-04-29
18 schema:description Accurate modeling of soil water content is required for a reasonable prediction of crop yield and of agrochemical leaching in the field. However, complex mathematical models faced the difficult-to-calibrate parameters and the distinct knowledge between the developers and users. In this study, a deterministic model is presented and is used to investigate the effects of controlled drainage on soil moisture dynamics in a shallow groundwater area. This simplified one-dimensional model is formulated to simulate soil moisture in the field on a daily basis and takes into account only the vertical hydrological processes. A linear assumption is proposed and is used to calculate the capillary rise from the groundwater. The pipe drainage volume is calculated by using a steady-state approximation method and the leakage rate is calculated as a function of soil moisture. The model is successfully calibrated by using field experiment data from four different pipe drainage treatments with several field observations. The model was validated by comparing the simulations with observed soil water content during the experimental seasons. The comparison results demonstrated the robustness and effectiveness of the model in the prediction of average soil moisture values. The input data required to run the model are widely available and can be measured easily in the field. It is observed that controlled drainage results in lower groundwater contribution to the root zone and lower depth of percolation to the groundwater, thus helping in the maintenance of a low level of soil salinity in the root zone.
19 schema:genre article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N8574e449392446f6a6f5eedf1f312a94
23 Nb6e9f543755a48268261632a89c4fba7
24 sg:journal.1113424
25 schema:keywords account
26 accurate modeling
27 agrochemical leaching
28 approximation method
29 area
30 assumption
31 basis
32 capillary rise
33 comparison results
34 complex mathematical models
35 content
36 continuous simulation model
37 contribution
38 crop yield
39 daily basis
40 data
41 depth
42 deterministic model
43 developers
44 distinct knowledge
45 drainage
46 drainage results
47 drainage treatment
48 drainage volume
49 dynamics
50 effect
51 effectiveness
52 experiment data
53 experimental seasons
54 field
55 field experiment data
56 field observations
57 function
58 groundwater
59 groundwater areas
60 groundwater contribution
61 groundwater table
62 hydrological processes
63 input data
64 knowledge
65 leaching
66 leakage rate
67 levels
68 linear assumption
69 low levels
70 lower depths
71 maintenance
72 mathematical model
73 method
74 model
75 modeling
76 moisture
77 moisture dynamics
78 moisture values
79 observations
80 observed soil water contents
81 one-dimensional model
82 parameters
83 percolation
84 prediction
85 process
86 rate
87 reasonable predictions
88 results
89 rise
90 robustness
91 root zone
92 salinity
93 season
94 shallow groundwater areas
95 shallow groundwater table
96 simulation model
97 simulations
98 soil moisture
99 soil moisture dynamics
100 soil moisture values
101 soil salinity
102 soil water content
103 steady state approximation method
104 study
105 table
106 treatment
107 users
108 values
109 volume
110 water content
111 yield
112 zone
113 schema:name Simplified continuous simulation model for investigating effects of controlled drainage on long-term soil moisture dynamics with a shallow groundwater table
114 schema:pagination 15565-15573
115 schema:productId N5b591ea062204f70be5ceacec74d168c
116 N94832936e6454945b30d9eabd3582b04
117 Nf2ff39f951884a7dac2be93a4602966d
118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019401001
119 https://doi.org/10.1007/s11356-016-6747-5
120 schema:sdDatePublished 2022-05-20T07:31
121 schema:sdLicense https://scigraph.springernature.com/explorer/license/
122 schema:sdPublisher N95f54e1d4bce4935bc3023e9028d7731
123 schema:url https://doi.org/10.1007/s11356-016-6747-5
124 sgo:license sg:explorer/license/
125 sgo:sdDataset articles
126 rdf:type schema:ScholarlyArticle
127 N20159fc087c54d1d9463e63778b53651 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Models, Theoretical
129 rdf:type schema:DefinedTerm
130 N217e9785b2864f2fac0f5cc980dd112a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Calibration
132 rdf:type schema:DefinedTerm
133 N25bbe8dc622a4c36963a059a6292299a rdf:first sg:person.010314752347.24
134 rdf:rest Nfc02e61c08634d58ba4fc8d42174f620
135 N26c8faa03b6e4744abf4cdb8094b2037 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Salinity
137 rdf:type schema:DefinedTerm
138 N5b591ea062204f70be5ceacec74d168c schema:name pubmed_id
139 schema:value 27126870
140 rdf:type schema:PropertyValue
141 N5c8d21b36db845389a9cd3cbf959ac27 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Agrochemicals
143 rdf:type schema:DefinedTerm
144 N64289ce2c72745678798071d8d84dd7a rdf:first sg:person.014731165631.01
145 rdf:rest rdf:nil
146 N714e2c6622c6400ab27450f23c2a1cce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Groundwater
148 rdf:type schema:DefinedTerm
149 N8574e449392446f6a6f5eedf1f312a94 schema:volumeNumber 23
150 rdf:type schema:PublicationVolume
151 N94832936e6454945b30d9eabd3582b04 schema:name doi
152 schema:value 10.1007/s11356-016-6747-5
153 rdf:type schema:PropertyValue
154 N95f54e1d4bce4935bc3023e9028d7731 schema:name Springer Nature - SN SciGraph project
155 rdf:type schema:Organization
156 N9630968dd2e34879901d8106c2c7e715 rdf:first sg:person.0615050455.34
157 rdf:rest N64289ce2c72745678798071d8d84dd7a
158 N9ae77653b80e4e2bb75a624a587cb7aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Water Pollutants, Chemical
160 rdf:type schema:DefinedTerm
161 N9c47805029d54c338da3e643070b27ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Water
163 rdf:type schema:DefinedTerm
164 Nb6e9f543755a48268261632a89c4fba7 schema:issueNumber 15
165 rdf:type schema:PublicationIssue
166 Nc346c3115efb480ab51f54918bd5d36a schema:affiliation grid-institutes:grid.49470.3e
167 schema:familyName Luo
168 schema:givenName Wenbing
169 rdf:type schema:Person
170 Nc8abc736cabd41b0b819c86783487a9b rdf:first sg:person.01106735177.13
171 rdf:rest N25bbe8dc622a4c36963a059a6292299a
172 Ncff61dd660fa4fe188407025a7d8fe42 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Soil
174 rdf:type schema:DefinedTerm
175 Nf2ff39f951884a7dac2be93a4602966d schema:name dimensions_id
176 schema:value pub.1019401001
177 rdf:type schema:PropertyValue
178 Nfc02e61c08634d58ba4fc8d42174f620 rdf:first Nc346c3115efb480ab51f54918bd5d36a
179 rdf:rest N9630968dd2e34879901d8106c2c7e715
180 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
181 schema:name Environmental Sciences
182 rdf:type schema:DefinedTerm
183 anzsrc-for:0503 schema:inDefinedTermSet anzsrc-for:
184 schema:name Soil Sciences
185 rdf:type schema:DefinedTerm
186 sg:grant.7184597 http://pending.schema.org/fundedItem sg:pub.10.1007/s11356-016-6747-5
187 rdf:type schema:MonetaryGrant
188 sg:grant.8255051 http://pending.schema.org/fundedItem sg:pub.10.1007/s11356-016-6747-5
189 rdf:type schema:MonetaryGrant
190 sg:grant.8264116 http://pending.schema.org/fundedItem sg:pub.10.1007/s11356-016-6747-5
191 rdf:type schema:MonetaryGrant
192 sg:journal.1113424 schema:issn 0944-1344
193 1614-7499
194 schema:name Environmental Science and Pollution Research
195 schema:publisher Springer Nature
196 rdf:type schema:Periodical
197 sg:person.010314752347.24 schema:affiliation grid-institutes:grid.419897.a
198 schema:familyName Tong
199 schema:givenName Juxiu
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010314752347.24
201 rdf:type schema:Person
202 sg:person.01106735177.13 schema:affiliation grid-institutes:grid.33199.31
203 schema:familyName Sun
204 schema:givenName Huaiwei
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106735177.13
206 rdf:type schema:Person
207 sg:person.014731165631.01 schema:affiliation grid-institutes:None
208 schema:familyName Yang
209 schema:givenName Jinzhong
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014731165631.01
211 rdf:type schema:Person
212 sg:person.0615050455.34 schema:affiliation grid-institutes:None
213 schema:familyName Wang
214 schema:givenName Xiugui
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615050455.34
216 rdf:type schema:Person
217 sg:pub.10.1007/978-1-4612-1626-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053136439
218 https://doi.org/10.1007/978-1-4612-1626-1
219 rdf:type schema:CreativeWork
220 sg:pub.10.1007/s11356-015-4860-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008406210
221 https://doi.org/10.1007/s11356-015-4860-5
222 rdf:type schema:CreativeWork
223 sg:pub.10.1007/s11356-016-6452-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015500152
224 https://doi.org/10.1007/s11356-016-6452-4
225 rdf:type schema:CreativeWork
226 sg:pub.10.1134/s1064229315070091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000702871
227 https://doi.org/10.1134/s1064229315070091
228 rdf:type schema:CreativeWork
229 grid-institutes:None schema:alternateName Institute of agricultural water conservancy, The Yangtze River academy of Sciences, 430010, Wuhan, China
230 schema:name Institute of agricultural water conservancy, The Yangtze River academy of Sciences, 430010, Wuhan, China
231 rdf:type schema:Organization
232 grid-institutes:grid.33199.31 schema:alternateName School of hydropower and information engineering, Huazhong University of Science & Technology, 430074, Wuhan, China
233 schema:name School of hydropower and information engineering, Huazhong University of Science & Technology, 430074, Wuhan, China
234 rdf:type schema:Organization
235 grid-institutes:grid.419897.a schema:alternateName Key Laboratory of Groundwater Circulation and Evolution, Ministry of Education, China University of Geosciences, 100083, Beijing, China
236 schema:name Key Laboratory of Groundwater Circulation and Evolution, Ministry of Education, China University of Geosciences, 100083, Beijing, China
237 rdf:type schema:Organization
238 grid-institutes:grid.49470.3e schema:alternateName State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China
239 schema:name State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China
240 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...