Simplified continuous simulation model for investigating effects of controlled drainage on long-term soil moisture dynamics with a shallow groundwater table View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-04-29

AUTHORS

Huaiwei Sun, Juxiu Tong, Wenbing Luo, Xiugui Wang, Jinzhong Yang

ABSTRACT

Accurate modeling of soil water content is required for a reasonable prediction of crop yield and of agrochemical leaching in the field. However, complex mathematical models faced the difficult-to-calibrate parameters and the distinct knowledge between the developers and users. In this study, a deterministic model is presented and is used to investigate the effects of controlled drainage on soil moisture dynamics in a shallow groundwater area. This simplified one-dimensional model is formulated to simulate soil moisture in the field on a daily basis and takes into account only the vertical hydrological processes. A linear assumption is proposed and is used to calculate the capillary rise from the groundwater. The pipe drainage volume is calculated by using a steady-state approximation method and the leakage rate is calculated as a function of soil moisture. The model is successfully calibrated by using field experiment data from four different pipe drainage treatments with several field observations. The model was validated by comparing the simulations with observed soil water content during the experimental seasons. The comparison results demonstrated the robustness and effectiveness of the model in the prediction of average soil moisture values. The input data required to run the model are widely available and can be measured easily in the field. It is observed that controlled drainage results in lower groundwater contribution to the root zone and lower depth of percolation to the groundwater, thus helping in the maintenance of a low level of soil salinity in the root zone. More... »

PAGES

15565-15573

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11356-016-6747-5

DOI

http://dx.doi.org/10.1007/s11356-016-6747-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019401001

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27126870


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0503", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Soil Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Agrochemicals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Calibration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Groundwater", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Salinity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Soil", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Water", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Water Pollutants, Chemical", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of hydropower and information engineering, Huazhong University of Science & Technology, 430074, Wuhan, China", 
          "id": "http://www.grid.ac/institutes/grid.33199.31", 
          "name": [
            "School of hydropower and information engineering, Huazhong University of Science & Technology, 430074, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Huaiwei", 
        "id": "sg:person.01106735177.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106735177.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Key Laboratory of Groundwater Circulation and Evolution, Ministry of Education, China University of Geosciences, 100083, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.419897.a", 
          "name": [
            "Key Laboratory of Groundwater Circulation and Evolution, Ministry of Education, China University of Geosciences, 100083, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tong", 
        "givenName": "Juxiu", 
        "id": "sg:person.010314752347.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010314752347.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China", 
          "id": "http://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luo", 
        "givenName": "Wenbing", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of agricultural water conservancy, The Yangtze River academy of Sciences, 430010, Wuhan, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute of agricultural water conservancy, The Yangtze River academy of Sciences, 430010, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Xiugui", 
        "id": "sg:person.0615050455.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615050455.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of agricultural water conservancy, The Yangtze River academy of Sciences, 430010, Wuhan, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute of agricultural water conservancy, The Yangtze River academy of Sciences, 430010, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Jinzhong", 
        "id": "sg:person.014731165631.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014731165631.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s1064229315070091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000702871", 
          "https://doi.org/10.1134/s1064229315070091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11356-015-4860-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008406210", 
          "https://doi.org/10.1007/s11356-015-4860-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11356-016-6452-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015500152", 
          "https://doi.org/10.1007/s11356-016-6452-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1626-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053136439", 
          "https://doi.org/10.1007/978-1-4612-1626-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-04-29", 
    "datePublishedReg": "2016-04-29", 
    "description": "Accurate modeling of soil water content is required for a reasonable prediction of crop yield and of agrochemical leaching in the field. However, complex mathematical models faced the difficult-to-calibrate parameters and the distinct knowledge between the developers and users. In this study, a deterministic model is presented and is used to investigate the effects of controlled drainage on soil moisture dynamics in a shallow groundwater area. This simplified one-dimensional model is formulated to simulate soil moisture in the field on a daily basis and takes into account only the vertical hydrological processes. A linear assumption is proposed and is used to calculate the capillary rise from the groundwater. The pipe drainage volume is calculated by using a steady-state approximation method and the leakage rate is calculated as a function of soil moisture. The model is successfully calibrated by using field experiment data from four different pipe drainage treatments with several field observations. The model was validated by comparing the simulations with observed soil water content during the experimental seasons. The comparison results demonstrated the robustness and effectiveness of the model in the prediction of average soil moisture values. The input data required to run the model are widely available and can be measured easily in the field. It is observed that controlled drainage results in lower groundwater contribution to the root zone and lower depth of percolation to the groundwater, thus helping in the maintenance of a low level of soil salinity in the root zone.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11356-016-6747-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8255051", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8264116", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7184597", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1113424", 
        "issn": [
          "0944-1344", 
          "1614-7499"
        ], 
        "name": "Environmental Science and Pollution Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "15", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "keywords": [
      "soil moisture dynamics", 
      "moisture dynamics", 
      "soil water content", 
      "soil moisture", 
      "long-term soil moisture dynamics", 
      "root zone", 
      "shallow groundwater areas", 
      "observed soil water content", 
      "shallow groundwater table", 
      "soil moisture values", 
      "continuous simulation model", 
      "groundwater contribution", 
      "hydrological processes", 
      "groundwater areas", 
      "groundwater table", 
      "water content", 
      "moisture values", 
      "field observations", 
      "calibrate parameters", 
      "agrochemical leaching", 
      "one-dimensional model", 
      "capillary rise", 
      "field experiment data", 
      "drainage results", 
      "soil salinity", 
      "groundwater", 
      "zone", 
      "lower depths", 
      "drainage treatment", 
      "moisture", 
      "accurate modeling", 
      "reasonable predictions", 
      "experiment data", 
      "complex mathematical models", 
      "drainage", 
      "mathematical model", 
      "simulation model", 
      "leakage rate", 
      "input data", 
      "drainage volume", 
      "salinity", 
      "crop yield", 
      "depth", 
      "deterministic model", 
      "comparison results", 
      "leaching", 
      "percolation", 
      "season", 
      "linear assumption", 
      "daily basis", 
      "dynamics", 
      "field", 
      "model", 
      "area", 
      "content", 
      "prediction", 
      "data", 
      "experimental seasons", 
      "rise", 
      "simulations", 
      "modeling", 
      "table", 
      "approximation method", 
      "robustness", 
      "contribution", 
      "distinct knowledge", 
      "parameters", 
      "results", 
      "process", 
      "volume", 
      "effect", 
      "method", 
      "values", 
      "yield", 
      "account", 
      "basis", 
      "assumption", 
      "rate", 
      "low levels", 
      "effectiveness", 
      "observations", 
      "study", 
      "levels", 
      "maintenance", 
      "knowledge", 
      "function", 
      "users", 
      "treatment", 
      "developers", 
      "vertical hydrological processes", 
      "pipe drainage volume", 
      "steady-state approximation method", 
      "different pipe drainage treatments", 
      "pipe drainage treatments", 
      "average soil moisture values", 
      "lower groundwater contribution", 
      "Simplified continuous simulation model"
    ], 
    "name": "Simplified continuous simulation model for investigating effects of controlled drainage on long-term soil moisture dynamics with a shallow groundwater table", 
    "pagination": "15565-15573", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019401001"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11356-016-6747-5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27126870"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11356-016-6747-5", 
      "https://app.dimensions.ai/details/publication/pub.1019401001"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_715.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11356-016-6747-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11356-016-6747-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11356-016-6747-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11356-016-6747-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11356-016-6747-5'


 

This table displays all metadata directly associated to this object as RDF triples.

249 TRIPLES      22 PREDICATES      135 URIs      123 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11356-016-6747-5 schema:about N04a4fc46ed0542d1876dfa8177e5abf7
2 N18944323cb50467c9ab3a8b58cbd2ad9
3 N21559e61aab447b4a1583fa222f3f479
4 N30ca0ef086f5407c860e652c275384f4
5 N43066f4a51654f40ab4d8c9588958067
6 N6158ffde9e98477f8ca027d983e77f31
7 Nb26714ae218642fab58c0022217fb0d4
8 Nda047af7f2ff440a8d21d650254643af
9 anzsrc-for:05
10 anzsrc-for:0503
11 schema:author Nd25a1088e14e4b46a8536ef6da2ad3dd
12 schema:citation sg:pub.10.1007/978-1-4612-1626-1
13 sg:pub.10.1007/s11356-015-4860-5
14 sg:pub.10.1007/s11356-016-6452-4
15 sg:pub.10.1134/s1064229315070091
16 schema:datePublished 2016-04-29
17 schema:datePublishedReg 2016-04-29
18 schema:description Accurate modeling of soil water content is required for a reasonable prediction of crop yield and of agrochemical leaching in the field. However, complex mathematical models faced the difficult-to-calibrate parameters and the distinct knowledge between the developers and users. In this study, a deterministic model is presented and is used to investigate the effects of controlled drainage on soil moisture dynamics in a shallow groundwater area. This simplified one-dimensional model is formulated to simulate soil moisture in the field on a daily basis and takes into account only the vertical hydrological processes. A linear assumption is proposed and is used to calculate the capillary rise from the groundwater. The pipe drainage volume is calculated by using a steady-state approximation method and the leakage rate is calculated as a function of soil moisture. The model is successfully calibrated by using field experiment data from four different pipe drainage treatments with several field observations. The model was validated by comparing the simulations with observed soil water content during the experimental seasons. The comparison results demonstrated the robustness and effectiveness of the model in the prediction of average soil moisture values. The input data required to run the model are widely available and can be measured easily in the field. It is observed that controlled drainage results in lower groundwater contribution to the root zone and lower depth of percolation to the groundwater, thus helping in the maintenance of a low level of soil salinity in the root zone.
19 schema:genre article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N411694cdd74f431fbbbbdecfe8571958
23 Nb1f17368f24c4f09be8ed6935a7493cc
24 sg:journal.1113424
25 schema:keywords Simplified continuous simulation model
26 account
27 accurate modeling
28 agrochemical leaching
29 approximation method
30 area
31 assumption
32 average soil moisture values
33 basis
34 calibrate parameters
35 capillary rise
36 comparison results
37 complex mathematical models
38 content
39 continuous simulation model
40 contribution
41 crop yield
42 daily basis
43 data
44 depth
45 deterministic model
46 developers
47 different pipe drainage treatments
48 distinct knowledge
49 drainage
50 drainage results
51 drainage treatment
52 drainage volume
53 dynamics
54 effect
55 effectiveness
56 experiment data
57 experimental seasons
58 field
59 field experiment data
60 field observations
61 function
62 groundwater
63 groundwater areas
64 groundwater contribution
65 groundwater table
66 hydrological processes
67 input data
68 knowledge
69 leaching
70 leakage rate
71 levels
72 linear assumption
73 long-term soil moisture dynamics
74 low levels
75 lower depths
76 lower groundwater contribution
77 maintenance
78 mathematical model
79 method
80 model
81 modeling
82 moisture
83 moisture dynamics
84 moisture values
85 observations
86 observed soil water content
87 one-dimensional model
88 parameters
89 percolation
90 pipe drainage treatments
91 pipe drainage volume
92 prediction
93 process
94 rate
95 reasonable predictions
96 results
97 rise
98 robustness
99 root zone
100 salinity
101 season
102 shallow groundwater areas
103 shallow groundwater table
104 simulation model
105 simulations
106 soil moisture
107 soil moisture dynamics
108 soil moisture values
109 soil salinity
110 soil water content
111 steady-state approximation method
112 study
113 table
114 treatment
115 users
116 values
117 vertical hydrological processes
118 volume
119 water content
120 yield
121 zone
122 schema:name Simplified continuous simulation model for investigating effects of controlled drainage on long-term soil moisture dynamics with a shallow groundwater table
123 schema:pagination 15565-15573
124 schema:productId N62ffb4fc1fa74648998213a32825bacd
125 Nbad78b9c43c04b3fb06c80f468621ab2
126 Nf511455dbdb84d1a817b0865f5f9d16b
127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019401001
128 https://doi.org/10.1007/s11356-016-6747-5
129 schema:sdDatePublished 2022-01-01T18:42
130 schema:sdLicense https://scigraph.springernature.com/explorer/license/
131 schema:sdPublisher N1fb78450d5e14a9295d1ae225f8685b7
132 schema:url https://doi.org/10.1007/s11356-016-6747-5
133 sgo:license sg:explorer/license/
134 sgo:sdDataset articles
135 rdf:type schema:ScholarlyArticle
136 N04a4fc46ed0542d1876dfa8177e5abf7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Water Pollutants, Chemical
138 rdf:type schema:DefinedTerm
139 N18944323cb50467c9ab3a8b58cbd2ad9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Salinity
141 rdf:type schema:DefinedTerm
142 N1fb78450d5e14a9295d1ae225f8685b7 schema:name Springer Nature - SN SciGraph project
143 rdf:type schema:Organization
144 N21559e61aab447b4a1583fa222f3f479 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Agrochemicals
146 rdf:type schema:DefinedTerm
147 N21e61076904f41c8bca747e5cd7cf338 rdf:first sg:person.010314752347.24
148 rdf:rest Nf794681cf75941a1b4bc972d02f401e2
149 N30ca0ef086f5407c860e652c275384f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Water
151 rdf:type schema:DefinedTerm
152 N411694cdd74f431fbbbbdecfe8571958 schema:issueNumber 15
153 rdf:type schema:PublicationIssue
154 N43066f4a51654f40ab4d8c9588958067 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Soil
156 rdf:type schema:DefinedTerm
157 N6158ffde9e98477f8ca027d983e77f31 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Groundwater
159 rdf:type schema:DefinedTerm
160 N62ffb4fc1fa74648998213a32825bacd schema:name dimensions_id
161 schema:value pub.1019401001
162 rdf:type schema:PropertyValue
163 Na3c271b70196432e8e34ac67aed91898 schema:affiliation grid-institutes:grid.49470.3e
164 schema:familyName Luo
165 schema:givenName Wenbing
166 rdf:type schema:Person
167 Nb0adffe8c7e34fbe980f7442e6445900 rdf:first sg:person.014731165631.01
168 rdf:rest rdf:nil
169 Nb1f17368f24c4f09be8ed6935a7493cc schema:volumeNumber 23
170 rdf:type schema:PublicationVolume
171 Nb26714ae218642fab58c0022217fb0d4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Calibration
173 rdf:type schema:DefinedTerm
174 Nbad78b9c43c04b3fb06c80f468621ab2 schema:name doi
175 schema:value 10.1007/s11356-016-6747-5
176 rdf:type schema:PropertyValue
177 Nc0e8fccc7faa4c0a81fbded9573a7a12 rdf:first sg:person.0615050455.34
178 rdf:rest Nb0adffe8c7e34fbe980f7442e6445900
179 Nd25a1088e14e4b46a8536ef6da2ad3dd rdf:first sg:person.01106735177.13
180 rdf:rest N21e61076904f41c8bca747e5cd7cf338
181 Nda047af7f2ff440a8d21d650254643af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Models, Theoretical
183 rdf:type schema:DefinedTerm
184 Nf511455dbdb84d1a817b0865f5f9d16b schema:name pubmed_id
185 schema:value 27126870
186 rdf:type schema:PropertyValue
187 Nf794681cf75941a1b4bc972d02f401e2 rdf:first Na3c271b70196432e8e34ac67aed91898
188 rdf:rest Nc0e8fccc7faa4c0a81fbded9573a7a12
189 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
190 schema:name Environmental Sciences
191 rdf:type schema:DefinedTerm
192 anzsrc-for:0503 schema:inDefinedTermSet anzsrc-for:
193 schema:name Soil Sciences
194 rdf:type schema:DefinedTerm
195 sg:grant.7184597 http://pending.schema.org/fundedItem sg:pub.10.1007/s11356-016-6747-5
196 rdf:type schema:MonetaryGrant
197 sg:grant.8255051 http://pending.schema.org/fundedItem sg:pub.10.1007/s11356-016-6747-5
198 rdf:type schema:MonetaryGrant
199 sg:grant.8264116 http://pending.schema.org/fundedItem sg:pub.10.1007/s11356-016-6747-5
200 rdf:type schema:MonetaryGrant
201 sg:journal.1113424 schema:issn 0944-1344
202 1614-7499
203 schema:name Environmental Science and Pollution Research
204 schema:publisher Springer Nature
205 rdf:type schema:Periodical
206 sg:person.010314752347.24 schema:affiliation grid-institutes:grid.419897.a
207 schema:familyName Tong
208 schema:givenName Juxiu
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010314752347.24
210 rdf:type schema:Person
211 sg:person.01106735177.13 schema:affiliation grid-institutes:grid.33199.31
212 schema:familyName Sun
213 schema:givenName Huaiwei
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106735177.13
215 rdf:type schema:Person
216 sg:person.014731165631.01 schema:affiliation grid-institutes:None
217 schema:familyName Yang
218 schema:givenName Jinzhong
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014731165631.01
220 rdf:type schema:Person
221 sg:person.0615050455.34 schema:affiliation grid-institutes:None
222 schema:familyName Wang
223 schema:givenName Xiugui
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615050455.34
225 rdf:type schema:Person
226 sg:pub.10.1007/978-1-4612-1626-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053136439
227 https://doi.org/10.1007/978-1-4612-1626-1
228 rdf:type schema:CreativeWork
229 sg:pub.10.1007/s11356-015-4860-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008406210
230 https://doi.org/10.1007/s11356-015-4860-5
231 rdf:type schema:CreativeWork
232 sg:pub.10.1007/s11356-016-6452-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015500152
233 https://doi.org/10.1007/s11356-016-6452-4
234 rdf:type schema:CreativeWork
235 sg:pub.10.1134/s1064229315070091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000702871
236 https://doi.org/10.1134/s1064229315070091
237 rdf:type schema:CreativeWork
238 grid-institutes:None schema:alternateName Institute of agricultural water conservancy, The Yangtze River academy of Sciences, 430010, Wuhan, China
239 schema:name Institute of agricultural water conservancy, The Yangtze River academy of Sciences, 430010, Wuhan, China
240 rdf:type schema:Organization
241 grid-institutes:grid.33199.31 schema:alternateName School of hydropower and information engineering, Huazhong University of Science & Technology, 430074, Wuhan, China
242 schema:name School of hydropower and information engineering, Huazhong University of Science & Technology, 430074, Wuhan, China
243 rdf:type schema:Organization
244 grid-institutes:grid.419897.a schema:alternateName Key Laboratory of Groundwater Circulation and Evolution, Ministry of Education, China University of Geosciences, 100083, Beijing, China
245 schema:name Key Laboratory of Groundwater Circulation and Evolution, Ministry of Education, China University of Geosciences, 100083, Beijing, China
246 rdf:type schema:Organization
247 grid-institutes:grid.49470.3e schema:alternateName State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China
248 schema:name State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China
249 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...