Ontology type: schema:ScholarlyArticle
2016-04-29
AUTHORSHuaiwei Sun, Juxiu Tong, Wenbing Luo, Xiugui Wang, Jinzhong Yang
ABSTRACTAccurate modeling of soil water content is required for a reasonable prediction of crop yield and of agrochemical leaching in the field. However, complex mathematical models faced the difficult-to-calibrate parameters and the distinct knowledge between the developers and users. In this study, a deterministic model is presented and is used to investigate the effects of controlled drainage on soil moisture dynamics in a shallow groundwater area. This simplified one-dimensional model is formulated to simulate soil moisture in the field on a daily basis and takes into account only the vertical hydrological processes. A linear assumption is proposed and is used to calculate the capillary rise from the groundwater. The pipe drainage volume is calculated by using a steady-state approximation method and the leakage rate is calculated as a function of soil moisture. The model is successfully calibrated by using field experiment data from four different pipe drainage treatments with several field observations. The model was validated by comparing the simulations with observed soil water content during the experimental seasons. The comparison results demonstrated the robustness and effectiveness of the model in the prediction of average soil moisture values. The input data required to run the model are widely available and can be measured easily in the field. It is observed that controlled drainage results in lower groundwater contribution to the root zone and lower depth of percolation to the groundwater, thus helping in the maintenance of a low level of soil salinity in the root zone. More... »
PAGES15565-15573
http://scigraph.springernature.com/pub.10.1007/s11356-016-6747-5
DOIhttp://dx.doi.org/10.1007/s11356-016-6747-5
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1019401001
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/27126870
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Environmental Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0503",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Soil Sciences",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Agrochemicals",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Calibration",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Groundwater",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Models, Theoretical",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Salinity",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Soil",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Water",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Water Pollutants, Chemical",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "School of hydropower and information engineering, Huazhong University of Science & Technology, 430074, Wuhan, China",
"id": "http://www.grid.ac/institutes/grid.33199.31",
"name": [
"School of hydropower and information engineering, Huazhong University of Science & Technology, 430074, Wuhan, China"
],
"type": "Organization"
},
"familyName": "Sun",
"givenName": "Huaiwei",
"id": "sg:person.01106735177.13",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106735177.13"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Key Laboratory of Groundwater Circulation and Evolution, Ministry of Education, China University of Geosciences, 100083, Beijing, China",
"id": "http://www.grid.ac/institutes/grid.419897.a",
"name": [
"Key Laboratory of Groundwater Circulation and Evolution, Ministry of Education, China University of Geosciences, 100083, Beijing, China"
],
"type": "Organization"
},
"familyName": "Tong",
"givenName": "Juxiu",
"id": "sg:person.010314752347.24",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010314752347.24"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China",
"id": "http://www.grid.ac/institutes/grid.49470.3e",
"name": [
"State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China"
],
"type": "Organization"
},
"familyName": "Luo",
"givenName": "Wenbing",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of agricultural water conservancy, The Yangtze River academy of Sciences, 430010, Wuhan, China",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Institute of agricultural water conservancy, The Yangtze River academy of Sciences, 430010, Wuhan, China"
],
"type": "Organization"
},
"familyName": "Wang",
"givenName": "Xiugui",
"id": "sg:person.0615050455.34",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615050455.34"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of agricultural water conservancy, The Yangtze River academy of Sciences, 430010, Wuhan, China",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Institute of agricultural water conservancy, The Yangtze River academy of Sciences, 430010, Wuhan, China"
],
"type": "Organization"
},
"familyName": "Yang",
"givenName": "Jinzhong",
"id": "sg:person.014731165631.01",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014731165631.01"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s11356-016-6452-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015500152",
"https://doi.org/10.1007/s11356-016-6452-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11356-015-4860-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008406210",
"https://doi.org/10.1007/s11356-015-4860-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/s1064229315070091",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000702871",
"https://doi.org/10.1134/s1064229315070091"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4612-1626-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053136439",
"https://doi.org/10.1007/978-1-4612-1626-1"
],
"type": "CreativeWork"
}
],
"datePublished": "2016-04-29",
"datePublishedReg": "2016-04-29",
"description": "Accurate modeling of soil water content is required for a reasonable prediction of crop yield and of agrochemical leaching in the field. However, complex mathematical models faced the difficult-to-calibrate parameters and the distinct knowledge between the developers and users. In this study, a deterministic model is presented and is used to investigate the effects of controlled drainage on soil moisture dynamics in a shallow groundwater area. This simplified one-dimensional model is formulated to simulate soil moisture in the field on a daily basis and takes into account only the vertical hydrological processes. A linear assumption is proposed and is used to calculate the capillary rise from the groundwater. The pipe drainage volume is calculated by using a steady-state approximation method and the leakage rate is calculated as a function of soil moisture. The model is successfully calibrated by using field experiment data from four different pipe drainage treatments with several field observations. The model was validated by comparing the simulations with observed soil water content during the experimental seasons. The comparison results demonstrated the robustness and effectiveness of the model in the prediction of average soil moisture values. The input data required to run the model are widely available and can be measured easily in the field. It is observed that controlled drainage results in lower groundwater contribution to the root zone and lower depth of percolation to the groundwater, thus helping in the maintenance of a low level of soil salinity in the root zone.",
"genre": "article",
"id": "sg:pub.10.1007/s11356-016-6747-5",
"inLanguage": "en",
"isAccessibleForFree": false,
"isFundedItemOf": [
{
"id": "sg:grant.7184597",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.8255051",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.8264116",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1113424",
"issn": [
"0944-1344",
"1614-7499"
],
"name": "Environmental Science and Pollution Research",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "15",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "23"
}
],
"keywords": [
"soil moisture dynamics",
"moisture dynamics",
"soil water content",
"soil moisture",
"root zone",
"observed soil water contents",
"shallow groundwater areas",
"shallow groundwater table",
"soil moisture values",
"continuous simulation model",
"groundwater contribution",
"hydrological processes",
"water content",
"groundwater areas",
"groundwater table",
"field experiment data",
"moisture values",
"field observations",
"capillary rise",
"one-dimensional model",
"steady state approximation method",
"drainage results",
"groundwater",
"soil salinity",
"lower depths",
"agrochemical leaching",
"zone",
"moisture",
"input data",
"drainage",
"drainage treatment",
"reasonable predictions",
"crop yield",
"salinity",
"deterministic model",
"depth",
"accurate modeling",
"drainage volume",
"season",
"daily basis",
"complex mathematical models",
"linear assumption",
"experiment data",
"simulation model",
"leaching",
"percolation",
"dynamics",
"mathematical model",
"experimental seasons",
"leakage rate",
"comparison results",
"model",
"prediction",
"data",
"area",
"content",
"field",
"rise",
"modeling",
"table",
"contribution",
"simulations",
"approximation method",
"distinct knowledge",
"robustness",
"yield",
"process",
"volume",
"results",
"values",
"parameters",
"low levels",
"assumption",
"basis",
"effect",
"rate",
"method",
"account",
"study",
"effectiveness",
"levels",
"knowledge",
"observations",
"maintenance",
"function",
"treatment",
"users",
"developers"
],
"name": "Simplified continuous simulation model for investigating effects of controlled drainage on long-term soil moisture dynamics with a shallow groundwater table",
"pagination": "15565-15573",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1019401001"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11356-016-6747-5"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"27126870"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11356-016-6747-5",
"https://app.dimensions.ai/details/publication/pub.1019401001"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:31",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_685.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s11356-016-6747-5"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11356-016-6747-5'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11356-016-6747-5'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11356-016-6747-5'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11356-016-6747-5'
This table displays all metadata directly associated to this object as RDF triples.
240 TRIPLES
22 PREDICATES
126 URIs
114 LITERALS
15 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s11356-016-6747-5 | schema:about | N20159fc087c54d1d9463e63778b53651 |
2 | ″ | ″ | N217e9785b2864f2fac0f5cc980dd112a |
3 | ″ | ″ | N26c8faa03b6e4744abf4cdb8094b2037 |
4 | ″ | ″ | N5c8d21b36db845389a9cd3cbf959ac27 |
5 | ″ | ″ | N714e2c6622c6400ab27450f23c2a1cce |
6 | ″ | ″ | N9ae77653b80e4e2bb75a624a587cb7aa |
7 | ″ | ″ | N9c47805029d54c338da3e643070b27ff |
8 | ″ | ″ | Ncff61dd660fa4fe188407025a7d8fe42 |
9 | ″ | ″ | anzsrc-for:05 |
10 | ″ | ″ | anzsrc-for:0503 |
11 | ″ | schema:author | Nc8abc736cabd41b0b819c86783487a9b |
12 | ″ | schema:citation | sg:pub.10.1007/978-1-4612-1626-1 |
13 | ″ | ″ | sg:pub.10.1007/s11356-015-4860-5 |
14 | ″ | ″ | sg:pub.10.1007/s11356-016-6452-4 |
15 | ″ | ″ | sg:pub.10.1134/s1064229315070091 |
16 | ″ | schema:datePublished | 2016-04-29 |
17 | ″ | schema:datePublishedReg | 2016-04-29 |
18 | ″ | schema:description | Accurate modeling of soil water content is required for a reasonable prediction of crop yield and of agrochemical leaching in the field. However, complex mathematical models faced the difficult-to-calibrate parameters and the distinct knowledge between the developers and users. In this study, a deterministic model is presented and is used to investigate the effects of controlled drainage on soil moisture dynamics in a shallow groundwater area. This simplified one-dimensional model is formulated to simulate soil moisture in the field on a daily basis and takes into account only the vertical hydrological processes. A linear assumption is proposed and is used to calculate the capillary rise from the groundwater. The pipe drainage volume is calculated by using a steady-state approximation method and the leakage rate is calculated as a function of soil moisture. The model is successfully calibrated by using field experiment data from four different pipe drainage treatments with several field observations. The model was validated by comparing the simulations with observed soil water content during the experimental seasons. The comparison results demonstrated the robustness and effectiveness of the model in the prediction of average soil moisture values. The input data required to run the model are widely available and can be measured easily in the field. It is observed that controlled drainage results in lower groundwater contribution to the root zone and lower depth of percolation to the groundwater, thus helping in the maintenance of a low level of soil salinity in the root zone. |
19 | ″ | schema:genre | article |
20 | ″ | schema:inLanguage | en |
21 | ″ | schema:isAccessibleForFree | false |
22 | ″ | schema:isPartOf | N8574e449392446f6a6f5eedf1f312a94 |
23 | ″ | ″ | Nb6e9f543755a48268261632a89c4fba7 |
24 | ″ | ″ | sg:journal.1113424 |
25 | ″ | schema:keywords | account |
26 | ″ | ″ | accurate modeling |
27 | ″ | ″ | agrochemical leaching |
28 | ″ | ″ | approximation method |
29 | ″ | ″ | area |
30 | ″ | ″ | assumption |
31 | ″ | ″ | basis |
32 | ″ | ″ | capillary rise |
33 | ″ | ″ | comparison results |
34 | ″ | ″ | complex mathematical models |
35 | ″ | ″ | content |
36 | ″ | ″ | continuous simulation model |
37 | ″ | ″ | contribution |
38 | ″ | ″ | crop yield |
39 | ″ | ″ | daily basis |
40 | ″ | ″ | data |
41 | ″ | ″ | depth |
42 | ″ | ″ | deterministic model |
43 | ″ | ″ | developers |
44 | ″ | ″ | distinct knowledge |
45 | ″ | ″ | drainage |
46 | ″ | ″ | drainage results |
47 | ″ | ″ | drainage treatment |
48 | ″ | ″ | drainage volume |
49 | ″ | ″ | dynamics |
50 | ″ | ″ | effect |
51 | ″ | ″ | effectiveness |
52 | ″ | ″ | experiment data |
53 | ″ | ″ | experimental seasons |
54 | ″ | ″ | field |
55 | ″ | ″ | field experiment data |
56 | ″ | ″ | field observations |
57 | ″ | ″ | function |
58 | ″ | ″ | groundwater |
59 | ″ | ″ | groundwater areas |
60 | ″ | ″ | groundwater contribution |
61 | ″ | ″ | groundwater table |
62 | ″ | ″ | hydrological processes |
63 | ″ | ″ | input data |
64 | ″ | ″ | knowledge |
65 | ″ | ″ | leaching |
66 | ″ | ″ | leakage rate |
67 | ″ | ″ | levels |
68 | ″ | ″ | linear assumption |
69 | ″ | ″ | low levels |
70 | ″ | ″ | lower depths |
71 | ″ | ″ | maintenance |
72 | ″ | ″ | mathematical model |
73 | ″ | ″ | method |
74 | ″ | ″ | model |
75 | ″ | ″ | modeling |
76 | ″ | ″ | moisture |
77 | ″ | ″ | moisture dynamics |
78 | ″ | ″ | moisture values |
79 | ″ | ″ | observations |
80 | ″ | ″ | observed soil water contents |
81 | ″ | ″ | one-dimensional model |
82 | ″ | ″ | parameters |
83 | ″ | ″ | percolation |
84 | ″ | ″ | prediction |
85 | ″ | ″ | process |
86 | ″ | ″ | rate |
87 | ″ | ″ | reasonable predictions |
88 | ″ | ″ | results |
89 | ″ | ″ | rise |
90 | ″ | ″ | robustness |
91 | ″ | ″ | root zone |
92 | ″ | ″ | salinity |
93 | ″ | ″ | season |
94 | ″ | ″ | shallow groundwater areas |
95 | ″ | ″ | shallow groundwater table |
96 | ″ | ″ | simulation model |
97 | ″ | ″ | simulations |
98 | ″ | ″ | soil moisture |
99 | ″ | ″ | soil moisture dynamics |
100 | ″ | ″ | soil moisture values |
101 | ″ | ″ | soil salinity |
102 | ″ | ″ | soil water content |
103 | ″ | ″ | steady state approximation method |
104 | ″ | ″ | study |
105 | ″ | ″ | table |
106 | ″ | ″ | treatment |
107 | ″ | ″ | users |
108 | ″ | ″ | values |
109 | ″ | ″ | volume |
110 | ″ | ″ | water content |
111 | ″ | ″ | yield |
112 | ″ | ″ | zone |
113 | ″ | schema:name | Simplified continuous simulation model for investigating effects of controlled drainage on long-term soil moisture dynamics with a shallow groundwater table |
114 | ″ | schema:pagination | 15565-15573 |
115 | ″ | schema:productId | N5b591ea062204f70be5ceacec74d168c |
116 | ″ | ″ | N94832936e6454945b30d9eabd3582b04 |
117 | ″ | ″ | Nf2ff39f951884a7dac2be93a4602966d |
118 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1019401001 |
119 | ″ | ″ | https://doi.org/10.1007/s11356-016-6747-5 |
120 | ″ | schema:sdDatePublished | 2022-05-20T07:31 |
121 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
122 | ″ | schema:sdPublisher | N95f54e1d4bce4935bc3023e9028d7731 |
123 | ″ | schema:url | https://doi.org/10.1007/s11356-016-6747-5 |
124 | ″ | sgo:license | sg:explorer/license/ |
125 | ″ | sgo:sdDataset | articles |
126 | ″ | rdf:type | schema:ScholarlyArticle |
127 | N20159fc087c54d1d9463e63778b53651 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
128 | ″ | schema:name | Models, Theoretical |
129 | ″ | rdf:type | schema:DefinedTerm |
130 | N217e9785b2864f2fac0f5cc980dd112a | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
131 | ″ | schema:name | Calibration |
132 | ″ | rdf:type | schema:DefinedTerm |
133 | N25bbe8dc622a4c36963a059a6292299a | rdf:first | sg:person.010314752347.24 |
134 | ″ | rdf:rest | Nfc02e61c08634d58ba4fc8d42174f620 |
135 | N26c8faa03b6e4744abf4cdb8094b2037 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
136 | ″ | schema:name | Salinity |
137 | ″ | rdf:type | schema:DefinedTerm |
138 | N5b591ea062204f70be5ceacec74d168c | schema:name | pubmed_id |
139 | ″ | schema:value | 27126870 |
140 | ″ | rdf:type | schema:PropertyValue |
141 | N5c8d21b36db845389a9cd3cbf959ac27 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
142 | ″ | schema:name | Agrochemicals |
143 | ″ | rdf:type | schema:DefinedTerm |
144 | N64289ce2c72745678798071d8d84dd7a | rdf:first | sg:person.014731165631.01 |
145 | ″ | rdf:rest | rdf:nil |
146 | N714e2c6622c6400ab27450f23c2a1cce | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
147 | ″ | schema:name | Groundwater |
148 | ″ | rdf:type | schema:DefinedTerm |
149 | N8574e449392446f6a6f5eedf1f312a94 | schema:volumeNumber | 23 |
150 | ″ | rdf:type | schema:PublicationVolume |
151 | N94832936e6454945b30d9eabd3582b04 | schema:name | doi |
152 | ″ | schema:value | 10.1007/s11356-016-6747-5 |
153 | ″ | rdf:type | schema:PropertyValue |
154 | N95f54e1d4bce4935bc3023e9028d7731 | schema:name | Springer Nature - SN SciGraph project |
155 | ″ | rdf:type | schema:Organization |
156 | N9630968dd2e34879901d8106c2c7e715 | rdf:first | sg:person.0615050455.34 |
157 | ″ | rdf:rest | N64289ce2c72745678798071d8d84dd7a |
158 | N9ae77653b80e4e2bb75a624a587cb7aa | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
159 | ″ | schema:name | Water Pollutants, Chemical |
160 | ″ | rdf:type | schema:DefinedTerm |
161 | N9c47805029d54c338da3e643070b27ff | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
162 | ″ | schema:name | Water |
163 | ″ | rdf:type | schema:DefinedTerm |
164 | Nb6e9f543755a48268261632a89c4fba7 | schema:issueNumber | 15 |
165 | ″ | rdf:type | schema:PublicationIssue |
166 | Nc346c3115efb480ab51f54918bd5d36a | schema:affiliation | grid-institutes:grid.49470.3e |
167 | ″ | schema:familyName | Luo |
168 | ″ | schema:givenName | Wenbing |
169 | ″ | rdf:type | schema:Person |
170 | Nc8abc736cabd41b0b819c86783487a9b | rdf:first | sg:person.01106735177.13 |
171 | ″ | rdf:rest | N25bbe8dc622a4c36963a059a6292299a |
172 | Ncff61dd660fa4fe188407025a7d8fe42 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
173 | ″ | schema:name | Soil |
174 | ″ | rdf:type | schema:DefinedTerm |
175 | Nf2ff39f951884a7dac2be93a4602966d | schema:name | dimensions_id |
176 | ″ | schema:value | pub.1019401001 |
177 | ″ | rdf:type | schema:PropertyValue |
178 | Nfc02e61c08634d58ba4fc8d42174f620 | rdf:first | Nc346c3115efb480ab51f54918bd5d36a |
179 | ″ | rdf:rest | N9630968dd2e34879901d8106c2c7e715 |
180 | anzsrc-for:05 | schema:inDefinedTermSet | anzsrc-for: |
181 | ″ | schema:name | Environmental Sciences |
182 | ″ | rdf:type | schema:DefinedTerm |
183 | anzsrc-for:0503 | schema:inDefinedTermSet | anzsrc-for: |
184 | ″ | schema:name | Soil Sciences |
185 | ″ | rdf:type | schema:DefinedTerm |
186 | sg:grant.7184597 | http://pending.schema.org/fundedItem | sg:pub.10.1007/s11356-016-6747-5 |
187 | ″ | rdf:type | schema:MonetaryGrant |
188 | sg:grant.8255051 | http://pending.schema.org/fundedItem | sg:pub.10.1007/s11356-016-6747-5 |
189 | ″ | rdf:type | schema:MonetaryGrant |
190 | sg:grant.8264116 | http://pending.schema.org/fundedItem | sg:pub.10.1007/s11356-016-6747-5 |
191 | ″ | rdf:type | schema:MonetaryGrant |
192 | sg:journal.1113424 | schema:issn | 0944-1344 |
193 | ″ | ″ | 1614-7499 |
194 | ″ | schema:name | Environmental Science and Pollution Research |
195 | ″ | schema:publisher | Springer Nature |
196 | ″ | rdf:type | schema:Periodical |
197 | sg:person.010314752347.24 | schema:affiliation | grid-institutes:grid.419897.a |
198 | ″ | schema:familyName | Tong |
199 | ″ | schema:givenName | Juxiu |
200 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010314752347.24 |
201 | ″ | rdf:type | schema:Person |
202 | sg:person.01106735177.13 | schema:affiliation | grid-institutes:grid.33199.31 |
203 | ″ | schema:familyName | Sun |
204 | ″ | schema:givenName | Huaiwei |
205 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106735177.13 |
206 | ″ | rdf:type | schema:Person |
207 | sg:person.014731165631.01 | schema:affiliation | grid-institutes:None |
208 | ″ | schema:familyName | Yang |
209 | ″ | schema:givenName | Jinzhong |
210 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014731165631.01 |
211 | ″ | rdf:type | schema:Person |
212 | sg:person.0615050455.34 | schema:affiliation | grid-institutes:None |
213 | ″ | schema:familyName | Wang |
214 | ″ | schema:givenName | Xiugui |
215 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615050455.34 |
216 | ″ | rdf:type | schema:Person |
217 | sg:pub.10.1007/978-1-4612-1626-1 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1053136439 |
218 | ″ | ″ | https://doi.org/10.1007/978-1-4612-1626-1 |
219 | ″ | rdf:type | schema:CreativeWork |
220 | sg:pub.10.1007/s11356-015-4860-5 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1008406210 |
221 | ″ | ″ | https://doi.org/10.1007/s11356-015-4860-5 |
222 | ″ | rdf:type | schema:CreativeWork |
223 | sg:pub.10.1007/s11356-016-6452-4 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1015500152 |
224 | ″ | ″ | https://doi.org/10.1007/s11356-016-6452-4 |
225 | ″ | rdf:type | schema:CreativeWork |
226 | sg:pub.10.1134/s1064229315070091 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1000702871 |
227 | ″ | ″ | https://doi.org/10.1134/s1064229315070091 |
228 | ″ | rdf:type | schema:CreativeWork |
229 | grid-institutes:None | schema:alternateName | Institute of agricultural water conservancy, The Yangtze River academy of Sciences, 430010, Wuhan, China |
230 | ″ | schema:name | Institute of agricultural water conservancy, The Yangtze River academy of Sciences, 430010, Wuhan, China |
231 | ″ | rdf:type | schema:Organization |
232 | grid-institutes:grid.33199.31 | schema:alternateName | School of hydropower and information engineering, Huazhong University of Science & Technology, 430074, Wuhan, China |
233 | ″ | schema:name | School of hydropower and information engineering, Huazhong University of Science & Technology, 430074, Wuhan, China |
234 | ″ | rdf:type | schema:Organization |
235 | grid-institutes:grid.419897.a | schema:alternateName | Key Laboratory of Groundwater Circulation and Evolution, Ministry of Education, China University of Geosciences, 100083, Beijing, China |
236 | ″ | schema:name | Key Laboratory of Groundwater Circulation and Evolution, Ministry of Education, China University of Geosciences, 100083, Beijing, China |
237 | ″ | rdf:type | schema:Organization |
238 | grid-institutes:grid.49470.3e | schema:alternateName | State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China |
239 | ″ | schema:name | State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China |
240 | ″ | rdf:type | schema:Organization |