Variability in optical properties of atmospheric aerosols and their frequency distribution over a mega city “New Delhi,” India View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-01-25

AUTHORS

S. Tiwari, Suresh Tiwari, P. K. Hopke, S. D. Attri, V. K. Soni, Abhay Kumar Singh

ABSTRACT

The role of atmospheric aerosols in climate and climate change is one of the largest uncertainties in understanding the present climate and in capability to predict future climate change. Due to this, the study of optical properties of atmospheric aerosols over a mega city “New Delhi” which is highly polluted and populated were conducted for two years long to see the aerosol loading and its seasonal variability using sun/sky radiometer data. Relatively higher mean aerosol optical depth (AOD) (0.90 ± 0.38) at 500 nm and associated Angstrom exponent (AE) (0.82 ± 0.35) for a pair of wavelength 400–870 nm is observed during the study period indicating highly turbid atmosphere throughout the year. Maximum AOD value is observed in the months of June and November while minimum is in transition months March and September. Apart from this, highest value of AOD (AE) value is observed in the post-monsoon [1.00 ± 0.42 (1.02 ± 0.16)] season followed by the winter [0.95 ± 0.36 (1.02 ± 0.20)] attributed to significance contribution of urban as well as biomass/crop residue burning aerosol which is further confirmed by aerosol type discrimination based on AOD vs AE. During the pre-monsoon season, mostly dust and mixed types aerosols are dominated. AODs value at shorter wavelength observed maximum in June and November while at longer wavelength maximum AOD is observed in June only. For the better understanding of seasonal aerosol modification process, the aerosol curvature effect is studied which show a strong seasonal dependency under a high turbid atmosphere, which are mainly associated with various emission sources. Five days air mass back trajectories were computed. They suggest different patterns of particle transport during the different seasons. Results suggest that mixtures of aerosols are present in the urban environment, which affect the regional air quality as well as climate. The present study will be very much useful to the modeler for validation of satellite data with observed data during estimation of radiative effect. More... »

PAGES

8781-8793

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11356-016-6060-3

DOI

http://dx.doi.org/10.1007/s11356-016-6060-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033657034

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26810661


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aerosols", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Air Pollutants", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Air Pollution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Atmosphere", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cities", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Climate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Climate Change", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dust", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Environmental Monitoring", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "India", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Seasons", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Atmospheric Research Laboratory, Department of Physics, Banaras Hindu University, Varanasi, India", 
          "id": "http://www.grid.ac/institutes/grid.411507.6", 
          "name": [
            "Atmospheric Research Laboratory, Department of Physics, Banaras Hindu University, Varanasi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tiwari", 
        "givenName": "S.", 
        "id": "sg:person.01156157035.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156157035.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Tropical Meteorology (New Delhi Branch), Prof Ramnath Vij Marg, 110060, New Delhi, India", 
          "id": "http://www.grid.ac/institutes/grid.417983.0", 
          "name": [
            "Indian Institute of Tropical Meteorology (New Delhi Branch), Prof Ramnath Vij Marg, 110060, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tiwari", 
        "givenName": "Suresh", 
        "id": "sg:person.01257207416.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257207416.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CARES, Clarkson University, Box 5708, 13699-5708, Potsdam, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.254280.9", 
          "name": [
            "CARES, Clarkson University, Box 5708, 13699-5708, Potsdam, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hopke", 
        "givenName": "P. K.", 
        "id": "sg:person.0716153551.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716153551.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "India Meteorological Department, 110001, New Delhi, India", 
          "id": "http://www.grid.ac/institutes/grid.466772.6", 
          "name": [
            "India Meteorological Department, 110001, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Attri", 
        "givenName": "S. D.", 
        "id": "sg:person.016114157161.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016114157161.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "India Meteorological Department, 110001, New Delhi, India", 
          "id": "http://www.grid.ac/institutes/grid.466772.6", 
          "name": [
            "India Meteorological Department, 110001, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Soni", 
        "givenName": "V. K.", 
        "id": "sg:person.01244434450.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244434450.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Atmospheric Research Laboratory, Department of Physics, Banaras Hindu University, Varanasi, India", 
          "id": "http://www.grid.ac/institutes/grid.411507.6", 
          "name": [
            "Atmospheric Research Laboratory, Department of Physics, Banaras Hindu University, Varanasi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Singh", 
        "givenName": "Abhay Kumar", 
        "id": "sg:person.011504515653.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011504515653.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature04348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016978384", 
          "https://doi.org/10.1038/nature04348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12040-012-0194-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037367464", 
          "https://doi.org/10.1007/s12040-012-0194-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11356-015-4495-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034888599", 
          "https://doi.org/10.1007/s11356-015-4495-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10874-010-9148-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006059462", 
          "https://doi.org/10.1007/s10874-010-9148-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00128-010-0010-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050012154", 
          "https://doi.org/10.1007/s00128-010-0010-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-014-2055-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020933530", 
          "https://doi.org/10.1007/s00382-014-2055-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-005-9025-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033914435", 
          "https://doi.org/10.1007/s10584-005-9025-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10661-008-0239-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029337674", 
          "https://doi.org/10.1007/s10661-008-0239-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00703-004-0097-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019415408", 
          "https://doi.org/10.1007/s00703-004-0097-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00875487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023963305", 
          "https://doi.org/10.1007/bf00875487"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-01-25", 
    "datePublishedReg": "2016-01-25", 
    "description": "The role of atmospheric aerosols in climate and climate change is one of the largest uncertainties in understanding the present climate and in capability to predict future climate change. Due to this, the study of optical properties of atmospheric aerosols over a mega city \u201cNew Delhi\u201d which is highly polluted and populated were conducted for two years long to see the aerosol loading and its seasonal variability using sun/sky radiometer data. Relatively higher mean aerosol optical depth (AOD) (0.90\u2009\u00b1\u20090.38) at 500\u00a0nm and associated Angstrom exponent (AE) (0.82\u2009\u00b1\u20090.35) for a pair of wavelength 400\u2013870\u00a0nm is observed during the study period indicating highly turbid atmosphere throughout the year. Maximum AOD value is observed in the months of June and November while minimum is in transition months March and September. Apart from this, highest value of AOD (AE) value is observed in the post-monsoon [1.00\u2009\u00b1\u20090.42 (1.02\u2009\u00b1\u20090.16)] season followed by the winter [0.95\u2009\u00b1\u20090.36 (1.02\u2009\u00b1\u20090.20)] attributed to significance contribution of urban as well as biomass/crop residue burning aerosol which is further confirmed by aerosol type discrimination based on AOD vs AE. During the pre-monsoon season, mostly dust and mixed types aerosols are dominated. AODs value at shorter wavelength observed maximum in June and November while at longer wavelength maximum AOD is observed in June only. For the better understanding of seasonal aerosol modification process, the aerosol curvature effect is studied which show a strong seasonal dependency under a high turbid atmosphere, which are mainly associated with various emission sources. Five days air mass back trajectories were computed. They suggest different patterns of particle transport during the different seasons. Results suggest that mixtures of aerosols are present in the urban environment, which affect the regional air quality as well as climate. The present study will be very much useful to the modeler for validation of satellite data with observed data during estimation of radiative effect.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11356-016-6060-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1113424", 
        "issn": [
          "0944-1344", 
          "1614-7499"
        ], 
        "name": "Environmental Science and Pollution Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "keywords": [
      "atmospheric aerosols", 
      "climate change", 
      "Angstrom exponent", 
      "pre-monsoon season", 
      "air mass back trajectories", 
      "future climate change", 
      "strong seasonal dependency", 
      "present climate", 
      "regional air quality", 
      "seasonal variability", 
      "radiometer data", 
      "AOD values", 
      "months of June", 
      "back trajectories", 
      "mixture of aerosols", 
      "large uncertainties", 
      "mega cities", 
      "aerosol loading", 
      "satellite data", 
      "radiative effects", 
      "turbid atmosphere", 
      "seasonal dependency", 
      "climate", 
      "maximum AOD", 
      "optical depth", 
      "observed data", 
      "aerosols", 
      "different seasons", 
      "months March", 
      "season", 
      "variability", 
      "atmosphere", 
      "emission sources", 
      "significance contribution", 
      "AOD", 
      "type aerosols", 
      "particle transport", 
      "air quality", 
      "higher values", 
      "frequency distribution", 
      "winter", 
      "depth", 
      "type discrimination", 
      "dust", 
      "wavelengths 400", 
      "data", 
      "better understanding", 
      "changes", 
      "shorter wavelengths", 
      "maximum", 
      "transport", 
      "urban environment", 
      "India", 
      "New Delhi", 
      "study period", 
      "burning", 
      "uncertainty", 
      "source", 
      "modelers", 
      "city", 
      "values", 
      "years", 
      "period", 
      "distribution", 
      "Delhi", 
      "minimum", 
      "modification process", 
      "patterns", 
      "environment", 
      "contribution", 
      "different patterns", 
      "crop residue burning", 
      "process", 
      "estimation", 
      "optical properties", 
      "loading", 
      "understanding", 
      "Urban", 
      "residue burning", 
      "curvature effects", 
      "trajectories", 
      "validation", 
      "study", 
      "results", 
      "properties", 
      "wavelength", 
      "quality", 
      "effect", 
      "present study", 
      "role", 
      "exponent", 
      "dependency", 
      "mixture", 
      "capability", 
      "months", 
      "discrimination", 
      "pairs", 
      "sky radiometer data", 
      "sun/sky radiometer data", 
      "maximum AOD values", 
      "transition months March", 
      "biomass/crop residue burning", 
      "mixed type aerosols", 
      "longer wavelength maximum AOD", 
      "wavelength maximum AOD", 
      "seasonal aerosol modification process", 
      "aerosol modification process", 
      "aerosol curvature effect", 
      "high turbid atmosphere", 
      "days air mass back trajectories", 
      "mass back trajectories"
    ], 
    "name": "Variability in optical properties of atmospheric aerosols and their frequency distribution over a mega city \u201cNew Delhi,\u201d India", 
    "pagination": "8781-8793", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033657034"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11356-016-6060-3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26810661"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11356-016-6060-3", 
      "https://app.dimensions.ai/details/publication/pub.1033657034"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_688.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11356-016-6060-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11356-016-6060-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11356-016-6060-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11356-016-6060-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11356-016-6060-3'


 

This table displays all metadata directly associated to this object as RDF triples.

305 TRIPLES      22 PREDICATES      159 URIs      140 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11356-016-6060-3 schema:about N1820b3c6b7994455bc83e44c9159f39a
2 N2a56a44771fa4c27babc38cc1dbb4f04
3 N3610407295d1472f827393c68d6f8e52
4 N38b942e322f64db3ac56ed4352ebc194
5 N46c911887b214003ad938d87e1d068d3
6 N66201eca717e40fab64330a8ab6b20d9
7 N97ef4e13af694701a738ba28119bcbf0
8 Nb2c174b7811f41fcaaddaa9062012a15
9 Ncaf1fdc51d344efd8dd409b759bb151c
10 Ndc7ce0c208c64b63a3141f18fa7cd471
11 Ne577197a5cfa46878188847b1bd797fd
12 anzsrc-for:03
13 anzsrc-for:05
14 anzsrc-for:06
15 schema:author Na1ed8942f8ad4f459c0f72d939bfea7f
16 schema:citation sg:pub.10.1007/bf00875487
17 sg:pub.10.1007/s00128-010-0010-4
18 sg:pub.10.1007/s00382-014-2055-2
19 sg:pub.10.1007/s00703-004-0097-4
20 sg:pub.10.1007/s10584-005-9025-y
21 sg:pub.10.1007/s10661-008-0239-0
22 sg:pub.10.1007/s10874-010-9148-z
23 sg:pub.10.1007/s11356-015-4495-6
24 sg:pub.10.1007/s12040-012-0194-6
25 sg:pub.10.1038/nature04348
26 schema:datePublished 2016-01-25
27 schema:datePublishedReg 2016-01-25
28 schema:description The role of atmospheric aerosols in climate and climate change is one of the largest uncertainties in understanding the present climate and in capability to predict future climate change. Due to this, the study of optical properties of atmospheric aerosols over a mega city “New Delhi” which is highly polluted and populated were conducted for two years long to see the aerosol loading and its seasonal variability using sun/sky radiometer data. Relatively higher mean aerosol optical depth (AOD) (0.90 ± 0.38) at 500 nm and associated Angstrom exponent (AE) (0.82 ± 0.35) for a pair of wavelength 400–870 nm is observed during the study period indicating highly turbid atmosphere throughout the year. Maximum AOD value is observed in the months of June and November while minimum is in transition months March and September. Apart from this, highest value of AOD (AE) value is observed in the post-monsoon [1.00 ± 0.42 (1.02 ± 0.16)] season followed by the winter [0.95 ± 0.36 (1.02 ± 0.20)] attributed to significance contribution of urban as well as biomass/crop residue burning aerosol which is further confirmed by aerosol type discrimination based on AOD vs AE. During the pre-monsoon season, mostly dust and mixed types aerosols are dominated. AODs value at shorter wavelength observed maximum in June and November while at longer wavelength maximum AOD is observed in June only. For the better understanding of seasonal aerosol modification process, the aerosol curvature effect is studied which show a strong seasonal dependency under a high turbid atmosphere, which are mainly associated with various emission sources. Five days air mass back trajectories were computed. They suggest different patterns of particle transport during the different seasons. Results suggest that mixtures of aerosols are present in the urban environment, which affect the regional air quality as well as climate. The present study will be very much useful to the modeler for validation of satellite data with observed data during estimation of radiative effect.
29 schema:genre article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N35477de4e8c74259b5b33766534131a4
33 N458c64a656674ed286d76e4257607180
34 sg:journal.1113424
35 schema:keywords AOD
36 AOD values
37 Angstrom exponent
38 Delhi
39 India
40 New Delhi
41 Urban
42 aerosol curvature effect
43 aerosol loading
44 aerosol modification process
45 aerosols
46 air mass back trajectories
47 air quality
48 atmosphere
49 atmospheric aerosols
50 back trajectories
51 better understanding
52 biomass/crop residue burning
53 burning
54 capability
55 changes
56 city
57 climate
58 climate change
59 contribution
60 crop residue burning
61 curvature effects
62 data
63 days air mass back trajectories
64 dependency
65 depth
66 different patterns
67 different seasons
68 discrimination
69 distribution
70 dust
71 effect
72 emission sources
73 environment
74 estimation
75 exponent
76 frequency distribution
77 future climate change
78 high turbid atmosphere
79 higher values
80 large uncertainties
81 loading
82 longer wavelength maximum AOD
83 mass back trajectories
84 maximum
85 maximum AOD
86 maximum AOD values
87 mega cities
88 minimum
89 mixed type aerosols
90 mixture
91 mixture of aerosols
92 modelers
93 modification process
94 months
95 months March
96 months of June
97 observed data
98 optical depth
99 optical properties
100 pairs
101 particle transport
102 patterns
103 period
104 pre-monsoon season
105 present climate
106 present study
107 process
108 properties
109 quality
110 radiative effects
111 radiometer data
112 regional air quality
113 residue burning
114 results
115 role
116 satellite data
117 season
118 seasonal aerosol modification process
119 seasonal dependency
120 seasonal variability
121 shorter wavelengths
122 significance contribution
123 sky radiometer data
124 source
125 strong seasonal dependency
126 study
127 study period
128 sun/sky radiometer data
129 trajectories
130 transition months March
131 transport
132 turbid atmosphere
133 type aerosols
134 type discrimination
135 uncertainty
136 understanding
137 urban environment
138 validation
139 values
140 variability
141 wavelength
142 wavelength maximum AOD
143 wavelengths 400
144 winter
145 years
146 schema:name Variability in optical properties of atmospheric aerosols and their frequency distribution over a mega city “New Delhi,” India
147 schema:pagination 8781-8793
148 schema:productId N5260f2b063c243909fcfc2acd6f8a42e
149 N559af4ebb0764d84bfea3ce5e2bddd84
150 N6b2ffc6c7be14c73b131940723757f14
151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033657034
152 https://doi.org/10.1007/s11356-016-6060-3
153 schema:sdDatePublished 2022-01-01T18:39
154 schema:sdLicense https://scigraph.springernature.com/explorer/license/
155 schema:sdPublisher N629aac0555994546a6e616c4344b22dc
156 schema:url https://doi.org/10.1007/s11356-016-6060-3
157 sgo:license sg:explorer/license/
158 sgo:sdDataset articles
159 rdf:type schema:ScholarlyArticle
160 N1820b3c6b7994455bc83e44c9159f39a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Dust
162 rdf:type schema:DefinedTerm
163 N2a56a44771fa4c27babc38cc1dbb4f04 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Environmental Monitoring
165 rdf:type schema:DefinedTerm
166 N35477de4e8c74259b5b33766534131a4 schema:issueNumber 9
167 rdf:type schema:PublicationIssue
168 N3610407295d1472f827393c68d6f8e52 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Atmosphere
170 rdf:type schema:DefinedTerm
171 N38b942e322f64db3ac56ed4352ebc194 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name India
173 rdf:type schema:DefinedTerm
174 N42255c52a4d046b4883ef3441ee890aa rdf:first sg:person.01244434450.01
175 rdf:rest N8e94ce6b19714c859ffa0f62d641591a
176 N458c64a656674ed286d76e4257607180 schema:volumeNumber 23
177 rdf:type schema:PublicationVolume
178 N46c911887b214003ad938d87e1d068d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Air Pollution
180 rdf:type schema:DefinedTerm
181 N5260f2b063c243909fcfc2acd6f8a42e schema:name pubmed_id
182 schema:value 26810661
183 rdf:type schema:PropertyValue
184 N52f77ef7f746448ebf80b394cabd1767 rdf:first sg:person.01257207416.35
185 rdf:rest Nd392e18e082547179c01e2513c5376d9
186 N559af4ebb0764d84bfea3ce5e2bddd84 schema:name doi
187 schema:value 10.1007/s11356-016-6060-3
188 rdf:type schema:PropertyValue
189 N629aac0555994546a6e616c4344b22dc schema:name Springer Nature - SN SciGraph project
190 rdf:type schema:Organization
191 N66201eca717e40fab64330a8ab6b20d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Cities
193 rdf:type schema:DefinedTerm
194 N6b2ffc6c7be14c73b131940723757f14 schema:name dimensions_id
195 schema:value pub.1033657034
196 rdf:type schema:PropertyValue
197 N8e94ce6b19714c859ffa0f62d641591a rdf:first sg:person.011504515653.83
198 rdf:rest rdf:nil
199 N97ef4e13af694701a738ba28119bcbf0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
200 schema:name Seasons
201 rdf:type schema:DefinedTerm
202 Na1ed8942f8ad4f459c0f72d939bfea7f rdf:first sg:person.01156157035.88
203 rdf:rest N52f77ef7f746448ebf80b394cabd1767
204 Nb2c174b7811f41fcaaddaa9062012a15 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
205 schema:name Climate
206 rdf:type schema:DefinedTerm
207 Nb52d9a6ec4ab441fbc61f02c032f2424 rdf:first sg:person.016114157161.68
208 rdf:rest N42255c52a4d046b4883ef3441ee890aa
209 Ncaf1fdc51d344efd8dd409b759bb151c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
210 schema:name Aerosols
211 rdf:type schema:DefinedTerm
212 Nd392e18e082547179c01e2513c5376d9 rdf:first sg:person.0716153551.02
213 rdf:rest Nb52d9a6ec4ab441fbc61f02c032f2424
214 Ndc7ce0c208c64b63a3141f18fa7cd471 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
215 schema:name Climate Change
216 rdf:type schema:DefinedTerm
217 Ne577197a5cfa46878188847b1bd797fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
218 schema:name Air Pollutants
219 rdf:type schema:DefinedTerm
220 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
221 schema:name Chemical Sciences
222 rdf:type schema:DefinedTerm
223 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
224 schema:name Environmental Sciences
225 rdf:type schema:DefinedTerm
226 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
227 schema:name Biological Sciences
228 rdf:type schema:DefinedTerm
229 sg:journal.1113424 schema:issn 0944-1344
230 1614-7499
231 schema:name Environmental Science and Pollution Research
232 schema:publisher Springer Nature
233 rdf:type schema:Periodical
234 sg:person.011504515653.83 schema:affiliation grid-institutes:grid.411507.6
235 schema:familyName Singh
236 schema:givenName Abhay Kumar
237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011504515653.83
238 rdf:type schema:Person
239 sg:person.01156157035.88 schema:affiliation grid-institutes:grid.411507.6
240 schema:familyName Tiwari
241 schema:givenName S.
242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156157035.88
243 rdf:type schema:Person
244 sg:person.01244434450.01 schema:affiliation grid-institutes:grid.466772.6
245 schema:familyName Soni
246 schema:givenName V. K.
247 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244434450.01
248 rdf:type schema:Person
249 sg:person.01257207416.35 schema:affiliation grid-institutes:grid.417983.0
250 schema:familyName Tiwari
251 schema:givenName Suresh
252 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257207416.35
253 rdf:type schema:Person
254 sg:person.016114157161.68 schema:affiliation grid-institutes:grid.466772.6
255 schema:familyName Attri
256 schema:givenName S. D.
257 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016114157161.68
258 rdf:type schema:Person
259 sg:person.0716153551.02 schema:affiliation grid-institutes:grid.254280.9
260 schema:familyName Hopke
261 schema:givenName P. K.
262 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716153551.02
263 rdf:type schema:Person
264 sg:pub.10.1007/bf00875487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023963305
265 https://doi.org/10.1007/bf00875487
266 rdf:type schema:CreativeWork
267 sg:pub.10.1007/s00128-010-0010-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050012154
268 https://doi.org/10.1007/s00128-010-0010-4
269 rdf:type schema:CreativeWork
270 sg:pub.10.1007/s00382-014-2055-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020933530
271 https://doi.org/10.1007/s00382-014-2055-2
272 rdf:type schema:CreativeWork
273 sg:pub.10.1007/s00703-004-0097-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019415408
274 https://doi.org/10.1007/s00703-004-0097-4
275 rdf:type schema:CreativeWork
276 sg:pub.10.1007/s10584-005-9025-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1033914435
277 https://doi.org/10.1007/s10584-005-9025-y
278 rdf:type schema:CreativeWork
279 sg:pub.10.1007/s10661-008-0239-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029337674
280 https://doi.org/10.1007/s10661-008-0239-0
281 rdf:type schema:CreativeWork
282 sg:pub.10.1007/s10874-010-9148-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1006059462
283 https://doi.org/10.1007/s10874-010-9148-z
284 rdf:type schema:CreativeWork
285 sg:pub.10.1007/s11356-015-4495-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034888599
286 https://doi.org/10.1007/s11356-015-4495-6
287 rdf:type schema:CreativeWork
288 sg:pub.10.1007/s12040-012-0194-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037367464
289 https://doi.org/10.1007/s12040-012-0194-6
290 rdf:type schema:CreativeWork
291 sg:pub.10.1038/nature04348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016978384
292 https://doi.org/10.1038/nature04348
293 rdf:type schema:CreativeWork
294 grid-institutes:grid.254280.9 schema:alternateName CARES, Clarkson University, Box 5708, 13699-5708, Potsdam, NY, USA
295 schema:name CARES, Clarkson University, Box 5708, 13699-5708, Potsdam, NY, USA
296 rdf:type schema:Organization
297 grid-institutes:grid.411507.6 schema:alternateName Atmospheric Research Laboratory, Department of Physics, Banaras Hindu University, Varanasi, India
298 schema:name Atmospheric Research Laboratory, Department of Physics, Banaras Hindu University, Varanasi, India
299 rdf:type schema:Organization
300 grid-institutes:grid.417983.0 schema:alternateName Indian Institute of Tropical Meteorology (New Delhi Branch), Prof Ramnath Vij Marg, 110060, New Delhi, India
301 schema:name Indian Institute of Tropical Meteorology (New Delhi Branch), Prof Ramnath Vij Marg, 110060, New Delhi, India
302 rdf:type schema:Organization
303 grid-institutes:grid.466772.6 schema:alternateName India Meteorological Department, 110001, New Delhi, India
304 schema:name India Meteorological Department, 110001, New Delhi, India
305 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...