Identification of nitrate leaching loss indicators through regression methods based on a meta-analysis of lysimeter studies View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-02

AUTHORS

M. Boy-Roura, K. C. Cameron, H. J. Di

ABSTRACT

This study presents a meta-analysis of 12 experiments that quantify nitrate-N leaching losses from grazed pasture systems in alluvial sedimentary soils in Canterbury (New Zealand). Mean measured nitrate-N leached (kg N/ha × 100 mm drainage) losses were 2.7 when no urine was applied, 8.4 at the urine rate of 300 kg N/ha, 9.8 at 500 kg N/ha, 24.5 at 700 kg N/ha and 51.4 at 1000 kg N/ha. Lismore soils presented significantly higher nitrate-N losses compared to Templeton soils. Moreover, a multiple linear regression (MLR) model was developed to determine the key factors that influence nitrate-N leaching and to predict nitrate-N leaching losses. The MLR analyses was calibrated and validated using 82 average values of nitrate-N leached and 48 explanatory variables representative of nitrogen inputs and outputs, transport, attenuation of nitrogen and farm management practices. The MLR model (R (2) = 0.81) showed that nitrate-N leaching losses were greater at higher urine application rates and when there was more drainage from rainfall and irrigation. On the other hand, nitrate leaching decreased when nitrification inhibitors (e.g. dicyandiamide (DCD)) were applied. Predicted nitrate-N leaching losses at the paddock scale were calculated using the MLR equation, and they varied largely depending on the urine application rate and urine patch coverage. More... »

PAGES

3671-3680

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11356-015-5529-9

DOI

http://dx.doi.org/10.1007/s11356-015-5529-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028879104

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26498804


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0503", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Soil Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Agriculture", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Environmental Monitoring", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fertilizers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "New Zealand", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nitrates", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Regression Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Soil", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Soil Pollutants", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Water Pollutants, Chemical", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Catalan Institute for Water Research", 
          "id": "https://www.grid.ac/institutes/grid.424734.2", 
          "name": [
            "Centre for Soil and Environmental Research, Lincoln University, Lincoln 7647, PO Box 85084, Christchurch, New Zealand", 
            "Catalan Institute for Water Research (ICRA), Parc Cient\u00edfic i Tecnol\u00f2gic de la Universitat de Girona, Emili Grahit 101, Edifici H2O, 17003, Girona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boy-Roura", 
        "givenName": "M.", 
        "id": "sg:person.01120671223.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120671223.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lincoln University", 
          "id": "https://www.grid.ac/institutes/grid.16488.33", 
          "name": [
            "Centre for Soil and Environmental Research, Lincoln University, Lincoln 7647, PO Box 85084, Christchurch, New Zealand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cameron", 
        "givenName": "K. C.", 
        "id": "sg:person.01363754713.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363754713.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lincoln University", 
          "id": "https://www.grid.ac/institutes/grid.16488.33", 
          "name": [
            "Centre for Soil and Environmental Research, Lincoln University, Lincoln 7647, PO Box 85084, Christchurch, New Zealand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Di", 
        "givenName": "H. J.", 
        "id": "sg:person.01070174233.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070174233.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0065-2113(08)60794-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001890465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00288233.2000.9513415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002126099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11270-005-2249-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002373911", 
          "https://doi.org/10.1007/s11270-005-2249-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11270-005-2249-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002373911", 
          "https://doi.org/10.1007/s11270-005-2249-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1475-2743.2006.00078.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002568713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/bs.agron.2014.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003275375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2013.09.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003575540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agee.2012.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004682633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00288233.2002.9513511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007225665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agwat.2014.04.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008439994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00288233.2002.9513514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013393480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/14777830510591651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013636071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00288233.2004.9513604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014195115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00288230909510499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014619383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021859610001012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016646248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021859610001012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016646248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agwat.2009.07.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018133472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00288230909510509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026346709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2389.1994.tb00529.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028845966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/aab.12014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032840334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3462-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034876164", 
          "https://doi.org/10.1007/978-1-4757-3462-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3462-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034876164", 
          "https://doi.org/10.1007/978-1-4757-3462-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1475-2743.2011.00378.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034957890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/gfs.12157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041488033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2011.04.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041850460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10705-012-9498-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043192287", 
          "https://doi.org/10.1007/s10705-012-9498-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1071/s98010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046290054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jenvman.2013.08.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046484909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10705-007-9115-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046855596", 
          "https://doi.org/10.1007/s10705-007-9115-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/sum.12101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048518703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1021471531188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049640599", 
          "https://doi.org/10.1023/a:1021471531188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agee.2004.12.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050720205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agee.2004.12.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050720205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1071/sr01015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051164116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agee.2005.03.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051699608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es060911u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055499377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es060911u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055499377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es405452q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055507396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2136/sssaj1992.03615995005600050048x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069047159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3318/bioe.2011.24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071142287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471733199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109700926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471733199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109700926"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-02", 
    "datePublishedReg": "2016-02-01", 
    "description": "This study presents a meta-analysis of 12 experiments that quantify nitrate-N leaching losses from grazed pasture systems in alluvial sedimentary soils in Canterbury (New Zealand). Mean measured nitrate-N leached (kg N/ha \u00d7 100 mm drainage) losses were 2.7 when no urine was applied, 8.4 at the urine rate of 300 kg N/ha, 9.8 at 500 kg N/ha, 24.5 at 700 kg N/ha and 51.4 at 1000 kg N/ha. Lismore soils presented significantly higher nitrate-N losses compared to Templeton soils. Moreover, a multiple linear regression (MLR) model was developed to determine the key factors that influence nitrate-N leaching and to predict nitrate-N leaching losses. The MLR analyses was calibrated and validated using 82 average values of nitrate-N leached and 48 explanatory variables representative of nitrogen inputs and outputs, transport, attenuation of nitrogen and farm management practices. The MLR model (R (2) = 0.81) showed that nitrate-N leaching losses were greater at higher urine application rates and when there was more drainage from rainfall and irrigation. On the other hand, nitrate leaching decreased when nitrification inhibitors (e.g. dicyandiamide (DCD)) were applied. Predicted nitrate-N leaching losses at the paddock scale were calculated using the MLR equation, and they varied largely depending on the urine application rate and urine patch coverage.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11356-015-5529-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1113424", 
        "issn": [
          "0944-1344", 
          "1614-7499"
        ], 
        "name": "Environmental Science and Pollution Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "name": "Identification of nitrate leaching loss indicators through regression methods based on a meta-analysis of lysimeter studies", 
    "pagination": "3671-3680", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8992d6332e5b46d301d3ab4c73bc143e787a213ac5fa320be91811494e9639ad"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26498804"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9441769"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11356-015-5529-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028879104"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11356-015-5529-9", 
      "https://app.dimensions.ai/details/publication/pub.1028879104"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000588.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11356-015-5529-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11356-015-5529-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11356-015-5529-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11356-015-5529-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11356-015-5529-9'


 

This table displays all metadata directly associated to this object as RDF triples.

236 TRIPLES      21 PREDICATES      74 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11356-015-5529-9 schema:about N05e0a215e5ab43cb902c1f7dd0eb4694
2 N16f2cce40eff420baf928227e435340f
3 N40cb450ddbd1459ebcbc45589407eb6f
4 N8b981cec56e1461ca031356131cbcad9
5 N8fd14a7ca59649cd9e01d1c25a4e9168
6 Naa175ff6115b4818970e65525deba377
7 Nb1082522ca9942bfb97974f4735f7c00
8 Nc97465bb8cb749b4a35b40c1b82af606
9 Nf3ca9e90faab4aafbec22f415a514f34
10 anzsrc-for:05
11 anzsrc-for:0503
12 schema:author Nf4d7fdb2189e4ea084f912bff74315ac
13 schema:citation sg:pub.10.1007/978-1-4757-3462-1
14 sg:pub.10.1007/s10705-007-9115-5
15 sg:pub.10.1007/s10705-012-9498-9
16 sg:pub.10.1007/s11270-005-2249-7
17 sg:pub.10.1023/a:1021471531188
18 https://doi.org/10.1002/0471733199
19 https://doi.org/10.1016/bs.agron.2014.09.004
20 https://doi.org/10.1016/j.agee.2004.12.018
21 https://doi.org/10.1016/j.agee.2005.03.006
22 https://doi.org/10.1016/j.agee.2012.07.003
23 https://doi.org/10.1016/j.agwat.2009.07.014
24 https://doi.org/10.1016/j.agwat.2014.04.018
25 https://doi.org/10.1016/j.jenvman.2013.08.047
26 https://doi.org/10.1016/j.jhydrol.2013.09.048
27 https://doi.org/10.1016/j.scitotenv.2011.04.048
28 https://doi.org/10.1016/s0065-2113(08)60794-4
29 https://doi.org/10.1017/s0021859610001012
30 https://doi.org/10.1021/es060911u
31 https://doi.org/10.1021/es405452q
32 https://doi.org/10.1071/s98010
33 https://doi.org/10.1071/sr01015
34 https://doi.org/10.1080/00288230909510499
35 https://doi.org/10.1080/00288230909510509
36 https://doi.org/10.1080/00288233.2000.9513415
37 https://doi.org/10.1080/00288233.2002.9513511
38 https://doi.org/10.1080/00288233.2002.9513514
39 https://doi.org/10.1080/00288233.2004.9513604
40 https://doi.org/10.1108/14777830510591651
41 https://doi.org/10.1111/aab.12014
42 https://doi.org/10.1111/gfs.12157
43 https://doi.org/10.1111/j.1365-2389.1994.tb00529.x
44 https://doi.org/10.1111/j.1475-2743.2006.00078.x
45 https://doi.org/10.1111/j.1475-2743.2011.00378.x
46 https://doi.org/10.1111/sum.12101
47 https://doi.org/10.2136/sssaj1992.03615995005600050048x
48 https://doi.org/10.3318/bioe.2011.24
49 schema:datePublished 2016-02
50 schema:datePublishedReg 2016-02-01
51 schema:description This study presents a meta-analysis of 12 experiments that quantify nitrate-N leaching losses from grazed pasture systems in alluvial sedimentary soils in Canterbury (New Zealand). Mean measured nitrate-N leached (kg N/ha × 100 mm drainage) losses were 2.7 when no urine was applied, 8.4 at the urine rate of 300 kg N/ha, 9.8 at 500 kg N/ha, 24.5 at 700 kg N/ha and 51.4 at 1000 kg N/ha. Lismore soils presented significantly higher nitrate-N losses compared to Templeton soils. Moreover, a multiple linear regression (MLR) model was developed to determine the key factors that influence nitrate-N leaching and to predict nitrate-N leaching losses. The MLR analyses was calibrated and validated using 82 average values of nitrate-N leached and 48 explanatory variables representative of nitrogen inputs and outputs, transport, attenuation of nitrogen and farm management practices. The MLR model (R (2) = 0.81) showed that nitrate-N leaching losses were greater at higher urine application rates and when there was more drainage from rainfall and irrigation. On the other hand, nitrate leaching decreased when nitrification inhibitors (e.g. dicyandiamide (DCD)) were applied. Predicted nitrate-N leaching losses at the paddock scale were calculated using the MLR equation, and they varied largely depending on the urine application rate and urine patch coverage.
52 schema:genre research_article
53 schema:inLanguage en
54 schema:isAccessibleForFree false
55 schema:isPartOf N872e2889673e4f9f85777bbc43f75dee
56 Ndc1bc82297534618a600fa94de314147
57 sg:journal.1113424
58 schema:name Identification of nitrate leaching loss indicators through regression methods based on a meta-analysis of lysimeter studies
59 schema:pagination 3671-3680
60 schema:productId N09352a1d9e4f4a0ca20da01562848895
61 N322a01447dc6427caa1a7a1c9da54b56
62 N478dc45f8470447a8f573e373dc78145
63 N627daa0d143e4531b53f8944ced2e639
64 Nca009217d6af4160a7b858a3ee39ede8
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028879104
66 https://doi.org/10.1007/s11356-015-5529-9
67 schema:sdDatePublished 2019-04-10T23:37
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher N034c86d5b31249588a11c2ab2c5151c0
70 schema:url http://link.springer.com/10.1007%2Fs11356-015-5529-9
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N034c86d5b31249588a11c2ab2c5151c0 schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 N05e0a215e5ab43cb902c1f7dd0eb4694 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Fertilizers
78 rdf:type schema:DefinedTerm
79 N09352a1d9e4f4a0ca20da01562848895 schema:name dimensions_id
80 schema:value pub.1028879104
81 rdf:type schema:PropertyValue
82 N16f2cce40eff420baf928227e435340f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Water Pollutants, Chemical
84 rdf:type schema:DefinedTerm
85 N27cbe7c4feb345a0b0484640a2bee516 rdf:first sg:person.01070174233.10
86 rdf:rest rdf:nil
87 N322a01447dc6427caa1a7a1c9da54b56 schema:name readcube_id
88 schema:value 8992d6332e5b46d301d3ab4c73bc143e787a213ac5fa320be91811494e9639ad
89 rdf:type schema:PropertyValue
90 N359b557f3a864c1697eb6709eefc562c rdf:first sg:person.01363754713.02
91 rdf:rest N27cbe7c4feb345a0b0484640a2bee516
92 N40cb450ddbd1459ebcbc45589407eb6f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Nitrates
94 rdf:type schema:DefinedTerm
95 N478dc45f8470447a8f573e373dc78145 schema:name doi
96 schema:value 10.1007/s11356-015-5529-9
97 rdf:type schema:PropertyValue
98 N627daa0d143e4531b53f8944ced2e639 schema:name nlm_unique_id
99 schema:value 9441769
100 rdf:type schema:PropertyValue
101 N872e2889673e4f9f85777bbc43f75dee schema:issueNumber 4
102 rdf:type schema:PublicationIssue
103 N8b981cec56e1461ca031356131cbcad9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Soil Pollutants
105 rdf:type schema:DefinedTerm
106 N8fd14a7ca59649cd9e01d1c25a4e9168 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Agriculture
108 rdf:type schema:DefinedTerm
109 Naa175ff6115b4818970e65525deba377 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Environmental Monitoring
111 rdf:type schema:DefinedTerm
112 Nb1082522ca9942bfb97974f4735f7c00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Soil
114 rdf:type schema:DefinedTerm
115 Nc97465bb8cb749b4a35b40c1b82af606 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Regression Analysis
117 rdf:type schema:DefinedTerm
118 Nca009217d6af4160a7b858a3ee39ede8 schema:name pubmed_id
119 schema:value 26498804
120 rdf:type schema:PropertyValue
121 Ndc1bc82297534618a600fa94de314147 schema:volumeNumber 23
122 rdf:type schema:PublicationVolume
123 Nf3ca9e90faab4aafbec22f415a514f34 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name New Zealand
125 rdf:type schema:DefinedTerm
126 Nf4d7fdb2189e4ea084f912bff74315ac rdf:first sg:person.01120671223.42
127 rdf:rest N359b557f3a864c1697eb6709eefc562c
128 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
129 schema:name Environmental Sciences
130 rdf:type schema:DefinedTerm
131 anzsrc-for:0503 schema:inDefinedTermSet anzsrc-for:
132 schema:name Soil Sciences
133 rdf:type schema:DefinedTerm
134 sg:journal.1113424 schema:issn 0944-1344
135 1614-7499
136 schema:name Environmental Science and Pollution Research
137 rdf:type schema:Periodical
138 sg:person.01070174233.10 schema:affiliation https://www.grid.ac/institutes/grid.16488.33
139 schema:familyName Di
140 schema:givenName H. J.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070174233.10
142 rdf:type schema:Person
143 sg:person.01120671223.42 schema:affiliation https://www.grid.ac/institutes/grid.424734.2
144 schema:familyName Boy-Roura
145 schema:givenName M.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120671223.42
147 rdf:type schema:Person
148 sg:person.01363754713.02 schema:affiliation https://www.grid.ac/institutes/grid.16488.33
149 schema:familyName Cameron
150 schema:givenName K. C.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363754713.02
152 rdf:type schema:Person
153 sg:pub.10.1007/978-1-4757-3462-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034876164
154 https://doi.org/10.1007/978-1-4757-3462-1
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s10705-007-9115-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046855596
157 https://doi.org/10.1007/s10705-007-9115-5
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s10705-012-9498-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043192287
160 https://doi.org/10.1007/s10705-012-9498-9
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s11270-005-2249-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002373911
163 https://doi.org/10.1007/s11270-005-2249-7
164 rdf:type schema:CreativeWork
165 sg:pub.10.1023/a:1021471531188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049640599
166 https://doi.org/10.1023/a:1021471531188
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1002/0471733199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109700926
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/bs.agron.2014.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003275375
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.agee.2004.12.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050720205
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.agee.2005.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051699608
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.agee.2012.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004682633
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.agwat.2009.07.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018133472
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.agwat.2014.04.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008439994
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.jenvman.2013.08.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046484909
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.jhydrol.2013.09.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003575540
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.scitotenv.2011.04.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041850460
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/s0065-2113(08)60794-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001890465
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1017/s0021859610001012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016646248
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1021/es060911u schema:sameAs https://app.dimensions.ai/details/publication/pub.1055499377
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1021/es405452q schema:sameAs https://app.dimensions.ai/details/publication/pub.1055507396
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1071/s98010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046290054
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1071/sr01015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051164116
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1080/00288230909510499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014619383
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1080/00288230909510509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026346709
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1080/00288233.2000.9513415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002126099
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1080/00288233.2002.9513511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007225665
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1080/00288233.2002.9513514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013393480
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1080/00288233.2004.9513604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014195115
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1108/14777830510591651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013636071
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1111/aab.12014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032840334
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1111/gfs.12157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041488033
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1111/j.1365-2389.1994.tb00529.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028845966
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1111/j.1475-2743.2006.00078.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002568713
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1111/j.1475-2743.2011.00378.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034957890
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1111/sum.12101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048518703
225 rdf:type schema:CreativeWork
226 https://doi.org/10.2136/sssaj1992.03615995005600050048x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069047159
227 rdf:type schema:CreativeWork
228 https://doi.org/10.3318/bioe.2011.24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071142287
229 rdf:type schema:CreativeWork
230 https://www.grid.ac/institutes/grid.16488.33 schema:alternateName Lincoln University
231 schema:name Centre for Soil and Environmental Research, Lincoln University, Lincoln 7647, PO Box 85084, Christchurch, New Zealand
232 rdf:type schema:Organization
233 https://www.grid.ac/institutes/grid.424734.2 schema:alternateName Catalan Institute for Water Research
234 schema:name Catalan Institute for Water Research (ICRA), Parc Científic i Tecnològic de la Universitat de Girona, Emili Grahit 101, Edifici H2O, 17003, Girona, Spain
235 Centre for Soil and Environmental Research, Lincoln University, Lincoln 7647, PO Box 85084, Christchurch, New Zealand
236 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...