Global sensitivity analysis for an integrated model for simulation of nitrogen dynamics under the irrigation with treated wastewater View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-06-18

AUTHORS

Huaiwei Sun, Yan Zhu, Jinzhong Yang, Xiugui Wang

ABSTRACT

As the amount of water resources that can be utilized for agricultural production is limited, the reuse of treated wastewater (TWW) for irrigation is a practical solution to alleviate the water crisis in China. The process-based models, which estimate nitrogen dynamics under irrigation, are widely used to investigate the best irrigation and fertilization management practices in developed and developing countries. However, for modeling such a complex system for wastewater reuse, it is critical to conduct a sensitivity analysis to determine numerous input parameters and their interactions that contribute most to the variance of the model output for the development of process-based model. In this study, application of a comprehensive global sensitivity analysis for nitrogen dynamics was reported. The objective was to compare different global sensitivity analysis (GSA) on the key parameters for different model predictions of nitrogen and crop growth modules. The analysis was performed as two steps. Firstly, Morris screening method, which is one of the most commonly used screening method, was carried out to select the top affected parameters; then, a variance-based global sensitivity analysis method (extended Fourier amplitude sensitivity test, EFAST) was used to investigate more thoroughly the effects of selected parameters on model predictions. The results of GSA showed that strong parameter interactions exist in crop nitrogen uptake, nitrogen denitrification, crop yield, and evapotranspiration modules. Among all parameters, one of the soil physical-related parameters named as the van Genuchten air entry parameter showed the largest sensitivity effects on major model predictions. These results verified that more effort should be focused on quantifying soil parameters for more accurate model predictions in nitrogen- and crop-related predictions, and stress the need to better calibrate the model in a global sense. This study demonstrates the advantages of the GSA on a more complete analysis of model input parameters and their interactions on the model output for nitrogen modeling. More... »

PAGES

16664-16675

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11356-015-4860-5

DOI

http://dx.doi.org/10.1007/s11356-015-4860-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008406210

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26084558


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adsorption", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Agriculture", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Crops, Agricultural", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Denitrification", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Chemical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nitrogen", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Waste Water", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Water Pollutants, Chemical", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Scientific computing, Florida State University, 36000, Tallahassee, USA", 
          "id": "http://www.grid.ac/institutes/grid.255986.5", 
          "name": [
            "School of hydropower and information engineering, Huazhong University of Science and Technology, 430074, Wuhan, China", 
            "Department of Scientific computing, Florida State University, 36000, Tallahassee, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Huaiwei", 
        "id": "sg:person.01106735177.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106735177.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China", 
          "id": "http://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "Department of Scientific computing, Florida State University, 36000, Tallahassee, USA", 
            "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Yan", 
        "id": "sg:person.01272341355.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272341355.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China", 
          "id": "http://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Jinzhong", 
        "id": "sg:person.014731165631.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014731165631.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China", 
          "id": "http://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Xiugui", 
        "id": "sg:person.0615050455.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615050455.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11356-013-1505-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050239218", 
          "https://doi.org/10.1007/s11356-013-1505-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002540100299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036240552", 
          "https://doi.org/10.1007/s002540100299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11356-014-2637-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053597298", 
          "https://doi.org/10.1007/s11356-014-2637-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11431-009-0349-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032396526", 
          "https://doi.org/10.1007/s11431-009-0349-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11356-014-2679-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009251760", 
          "https://doi.org/10.1007/s11356-014-2679-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11431-009-0350-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050047728", 
          "https://doi.org/10.1007/s11431-009-0350-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-06-18", 
    "datePublishedReg": "2015-06-18", 
    "description": "As the amount of water resources that can be utilized for agricultural production is limited, the reuse of treated wastewater (TWW) for irrigation is a practical solution to alleviate the water crisis in China. The process-based models, which estimate nitrogen dynamics under irrigation, are widely used to investigate the best irrigation and fertilization management practices in developed and developing countries. However, for modeling such a complex system for wastewater reuse, it is critical to conduct a sensitivity analysis to determine numerous input parameters and their interactions that contribute most to the variance of the model output for the development of process-based model. In this study, application of a comprehensive global sensitivity analysis for nitrogen dynamics was reported. The objective was to compare different global sensitivity analysis (GSA) on the key parameters for different model predictions of nitrogen and crop growth modules. The analysis was performed as two steps. Firstly, Morris screening method, which is one of the most commonly used screening method, was carried out to select the top affected parameters; then, a variance-based global sensitivity analysis method (extended Fourier amplitude sensitivity test, EFAST) was used to investigate more thoroughly the effects of selected parameters on model predictions. The results of GSA showed that strong parameter interactions exist in crop nitrogen uptake, nitrogen denitrification, crop yield, and evapotranspiration modules. Among all parameters, one of the soil physical-related parameters named as the van Genuchten air entry parameter showed the largest sensitivity effects on major model predictions. These results verified that more effort should be focused on quantifying soil parameters for more accurate model predictions in nitrogen- and crop-related predictions, and stress the need to better calibrate the model in a global sense. This study demonstrates the advantages of the GSA on a more complete analysis of model input parameters and their interactions on the model output for nitrogen modeling.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11356-015-4860-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7183453", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8258008", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7184597", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1113424", 
        "issn": [
          "0944-1344", 
          "1614-7499"
        ], 
        "name": "Environmental Science and Pollution Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "21", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "keywords": [
      "process-based model", 
      "nitrogen dynamics", 
      "fertilization management practices", 
      "crop growth module", 
      "crop nitrogen uptake", 
      "comprehensive global sensitivity analysis", 
      "global sensitivity analysis", 
      "agricultural production", 
      "better irrigation", 
      "growth module", 
      "nitrogen uptake", 
      "crop yield", 
      "management practices", 
      "model output", 
      "nitrogen denitrification", 
      "irrigation", 
      "soil parameters", 
      "water resources", 
      "water crisis", 
      "wastewater reuse", 
      "Morris screening method", 
      "sensitivity analysis", 
      "nitrogen", 
      "model predictions", 
      "screening method", 
      "model input parameters", 
      "soil", 
      "yield", 
      "production", 
      "dynamics", 
      "more effort", 
      "uptake", 
      "denitrification", 
      "accurate model predictions", 
      "wastewater", 
      "input parameters", 
      "resources", 
      "China", 
      "practice", 
      "integrated model", 
      "practical solution", 
      "objective", 
      "countries", 
      "output", 
      "effect", 
      "parameter interactions", 
      "interaction", 
      "amount", 
      "variance-based global sensitivity analysis method", 
      "efforts", 
      "reuse", 
      "prediction", 
      "affected parameters", 
      "need", 
      "study", 
      "applications", 
      "key parameters", 
      "sensitivity analysis method", 
      "development", 
      "parameters", 
      "results", 
      "analysis", 
      "numerous input parameters", 
      "model", 
      "system", 
      "variance", 
      "evapotranspiration module", 
      "method", 
      "crisis", 
      "advantages", 
      "entry parameters", 
      "complex systems", 
      "global sensitivity analysis method", 
      "global sense", 
      "different model predictions", 
      "step", 
      "analysis method", 
      "complete analysis", 
      "solution", 
      "modeling", 
      "simulations", 
      "module", 
      "sensitivity effects", 
      "sense", 
      "more accurate model predictions", 
      "strong parameter interaction", 
      "nitrogen modeling", 
      "results of GSA", 
      "different global sensitivity analysis", 
      "top affected parameters", 
      "van Genuchten air entry parameter", 
      "Genuchten air entry parameter", 
      "air entry parameter", 
      "largest sensitivity effects", 
      "major model predictions", 
      "quantifying soil parameters", 
      "crop-related predictions"
    ], 
    "name": "Global sensitivity analysis for an integrated model for simulation of nitrogen dynamics under the irrigation with treated wastewater", 
    "pagination": "16664-16675", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008406210"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11356-015-4860-5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26084558"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11356-015-4860-5", 
      "https://app.dimensions.ai/details/publication/pub.1008406210"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_671.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11356-015-4860-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11356-015-4860-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11356-015-4860-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11356-015-4860-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11356-015-4860-5'


 

This table displays all metadata directly associated to this object as RDF triples.

259 TRIPLES      22 PREDICATES      140 URIs      125 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11356-015-4860-5 schema:about N166492bb0aaa4ff3842d4f13200ba101
2 N48c2fe34291847fe980b756cf04cf39e
3 N51dcb1d1661944ac951b38d9fd7afbcd
4 N57c0c082a8b8457bac24b1632cb39c5a
5 N876f106c7f9e4cc7a0a236839d66d3a7
6 N9707f58829414bb09b6ac105cdc8c0ea
7 Na04dca6e02ea45d882b0ca6c27292620
8 Na80989c7a8534e54a0cfdb070d13b107
9 Ncaebcf70f911480b81bef268719be340
10 Nf37d85de64e14b55b288908917f51a8e
11 anzsrc-for:03
12 anzsrc-for:05
13 anzsrc-for:06
14 schema:author N045dd8e1ce8c45939131db785c980ae1
15 schema:citation sg:pub.10.1007/s002540100299
16 sg:pub.10.1007/s11356-013-1505-4
17 sg:pub.10.1007/s11356-014-2637-x
18 sg:pub.10.1007/s11356-014-2679-0
19 sg:pub.10.1007/s11431-009-0349-0
20 sg:pub.10.1007/s11431-009-0350-7
21 schema:datePublished 2015-06-18
22 schema:datePublishedReg 2015-06-18
23 schema:description As the amount of water resources that can be utilized for agricultural production is limited, the reuse of treated wastewater (TWW) for irrigation is a practical solution to alleviate the water crisis in China. The process-based models, which estimate nitrogen dynamics under irrigation, are widely used to investigate the best irrigation and fertilization management practices in developed and developing countries. However, for modeling such a complex system for wastewater reuse, it is critical to conduct a sensitivity analysis to determine numerous input parameters and their interactions that contribute most to the variance of the model output for the development of process-based model. In this study, application of a comprehensive global sensitivity analysis for nitrogen dynamics was reported. The objective was to compare different global sensitivity analysis (GSA) on the key parameters for different model predictions of nitrogen and crop growth modules. The analysis was performed as two steps. Firstly, Morris screening method, which is one of the most commonly used screening method, was carried out to select the top affected parameters; then, a variance-based global sensitivity analysis method (extended Fourier amplitude sensitivity test, EFAST) was used to investigate more thoroughly the effects of selected parameters on model predictions. The results of GSA showed that strong parameter interactions exist in crop nitrogen uptake, nitrogen denitrification, crop yield, and evapotranspiration modules. Among all parameters, one of the soil physical-related parameters named as the van Genuchten air entry parameter showed the largest sensitivity effects on major model predictions. These results verified that more effort should be focused on quantifying soil parameters for more accurate model predictions in nitrogen- and crop-related predictions, and stress the need to better calibrate the model in a global sense. This study demonstrates the advantages of the GSA on a more complete analysis of model input parameters and their interactions on the model output for nitrogen modeling.
24 schema:genre article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N102ca957fc8b4d1486008b417146a59c
28 N2e26abc790c74af5ba99df9eef8e981b
29 sg:journal.1113424
30 schema:keywords China
31 Genuchten air entry parameter
32 Morris screening method
33 accurate model predictions
34 advantages
35 affected parameters
36 agricultural production
37 air entry parameter
38 amount
39 analysis
40 analysis method
41 applications
42 better irrigation
43 complete analysis
44 complex systems
45 comprehensive global sensitivity analysis
46 countries
47 crisis
48 crop growth module
49 crop nitrogen uptake
50 crop yield
51 crop-related predictions
52 denitrification
53 development
54 different global sensitivity analysis
55 different model predictions
56 dynamics
57 effect
58 efforts
59 entry parameters
60 evapotranspiration module
61 fertilization management practices
62 global sense
63 global sensitivity analysis
64 global sensitivity analysis method
65 growth module
66 input parameters
67 integrated model
68 interaction
69 irrigation
70 key parameters
71 largest sensitivity effects
72 major model predictions
73 management practices
74 method
75 model
76 model input parameters
77 model output
78 model predictions
79 modeling
80 module
81 more accurate model predictions
82 more effort
83 need
84 nitrogen
85 nitrogen denitrification
86 nitrogen dynamics
87 nitrogen modeling
88 nitrogen uptake
89 numerous input parameters
90 objective
91 output
92 parameter interactions
93 parameters
94 practical solution
95 practice
96 prediction
97 process-based model
98 production
99 quantifying soil parameters
100 resources
101 results
102 results of GSA
103 reuse
104 screening method
105 sense
106 sensitivity analysis
107 sensitivity analysis method
108 sensitivity effects
109 simulations
110 soil
111 soil parameters
112 solution
113 step
114 strong parameter interaction
115 study
116 system
117 top affected parameters
118 uptake
119 van Genuchten air entry parameter
120 variance
121 variance-based global sensitivity analysis method
122 wastewater
123 wastewater reuse
124 water crisis
125 water resources
126 yield
127 schema:name Global sensitivity analysis for an integrated model for simulation of nitrogen dynamics under the irrigation with treated wastewater
128 schema:pagination 16664-16675
129 schema:productId N137ba34857924ce2933a84ea1132f50f
130 N52a8b5d930d740e6a81a2001f93698b4
131 N55b363d41b7548f9863c2c3683316fc1
132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008406210
133 https://doi.org/10.1007/s11356-015-4860-5
134 schema:sdDatePublished 2021-12-01T19:34
135 schema:sdLicense https://scigraph.springernature.com/explorer/license/
136 schema:sdPublisher Nb6651fbab37c403d855a583c7f9e2634
137 schema:url https://doi.org/10.1007/s11356-015-4860-5
138 sgo:license sg:explorer/license/
139 sgo:sdDataset articles
140 rdf:type schema:ScholarlyArticle
141 N045dd8e1ce8c45939131db785c980ae1 rdf:first sg:person.01106735177.13
142 rdf:rest N25d4482cdaf04867815295f8514b515d
143 N102ca957fc8b4d1486008b417146a59c schema:volumeNumber 22
144 rdf:type schema:PublicationVolume
145 N137ba34857924ce2933a84ea1132f50f schema:name dimensions_id
146 schema:value pub.1008406210
147 rdf:type schema:PropertyValue
148 N166492bb0aaa4ff3842d4f13200ba101 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Nitrogen
150 rdf:type schema:DefinedTerm
151 N25d4482cdaf04867815295f8514b515d rdf:first sg:person.01272341355.16
152 rdf:rest N90369fc3cc024f62bc0c53457c055887
153 N2e26abc790c74af5ba99df9eef8e981b schema:issueNumber 21
154 rdf:type schema:PublicationIssue
155 N48c2fe34291847fe980b756cf04cf39e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Sensitivity and Specificity
157 rdf:type schema:DefinedTerm
158 N51dcb1d1661944ac951b38d9fd7afbcd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Waste Water
160 rdf:type schema:DefinedTerm
161 N52a8b5d930d740e6a81a2001f93698b4 schema:name doi
162 schema:value 10.1007/s11356-015-4860-5
163 rdf:type schema:PropertyValue
164 N55b363d41b7548f9863c2c3683316fc1 schema:name pubmed_id
165 schema:value 26084558
166 rdf:type schema:PropertyValue
167 N57c0c082a8b8457bac24b1632cb39c5a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Computer Simulation
169 rdf:type schema:DefinedTerm
170 N876f106c7f9e4cc7a0a236839d66d3a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Water Pollutants, Chemical
172 rdf:type schema:DefinedTerm
173 N90369fc3cc024f62bc0c53457c055887 rdf:first sg:person.014731165631.01
174 rdf:rest Nd237446fe6b644fbb91e687b7fd0ef0b
175 N9707f58829414bb09b6ac105cdc8c0ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Denitrification
177 rdf:type schema:DefinedTerm
178 Na04dca6e02ea45d882b0ca6c27292620 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Agriculture
180 rdf:type schema:DefinedTerm
181 Na80989c7a8534e54a0cfdb070d13b107 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Adsorption
183 rdf:type schema:DefinedTerm
184 Nb6651fbab37c403d855a583c7f9e2634 schema:name Springer Nature - SN SciGraph project
185 rdf:type schema:Organization
186 Ncaebcf70f911480b81bef268719be340 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Models, Chemical
188 rdf:type schema:DefinedTerm
189 Nd237446fe6b644fbb91e687b7fd0ef0b rdf:first sg:person.0615050455.34
190 rdf:rest rdf:nil
191 Nf37d85de64e14b55b288908917f51a8e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Crops, Agricultural
193 rdf:type schema:DefinedTerm
194 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
195 schema:name Chemical Sciences
196 rdf:type schema:DefinedTerm
197 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
198 schema:name Environmental Sciences
199 rdf:type schema:DefinedTerm
200 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
201 schema:name Biological Sciences
202 rdf:type schema:DefinedTerm
203 sg:grant.7183453 http://pending.schema.org/fundedItem sg:pub.10.1007/s11356-015-4860-5
204 rdf:type schema:MonetaryGrant
205 sg:grant.7184597 http://pending.schema.org/fundedItem sg:pub.10.1007/s11356-015-4860-5
206 rdf:type schema:MonetaryGrant
207 sg:grant.8258008 http://pending.schema.org/fundedItem sg:pub.10.1007/s11356-015-4860-5
208 rdf:type schema:MonetaryGrant
209 sg:journal.1113424 schema:issn 0944-1344
210 1614-7499
211 schema:name Environmental Science and Pollution Research
212 schema:publisher Springer Nature
213 rdf:type schema:Periodical
214 sg:person.01106735177.13 schema:affiliation grid-institutes:grid.255986.5
215 schema:familyName Sun
216 schema:givenName Huaiwei
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106735177.13
218 rdf:type schema:Person
219 sg:person.01272341355.16 schema:affiliation grid-institutes:grid.49470.3e
220 schema:familyName Zhu
221 schema:givenName Yan
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272341355.16
223 rdf:type schema:Person
224 sg:person.014731165631.01 schema:affiliation grid-institutes:grid.49470.3e
225 schema:familyName Yang
226 schema:givenName Jinzhong
227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014731165631.01
228 rdf:type schema:Person
229 sg:person.0615050455.34 schema:affiliation grid-institutes:grid.49470.3e
230 schema:familyName Wang
231 schema:givenName Xiugui
232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615050455.34
233 rdf:type schema:Person
234 sg:pub.10.1007/s002540100299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036240552
235 https://doi.org/10.1007/s002540100299
236 rdf:type schema:CreativeWork
237 sg:pub.10.1007/s11356-013-1505-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050239218
238 https://doi.org/10.1007/s11356-013-1505-4
239 rdf:type schema:CreativeWork
240 sg:pub.10.1007/s11356-014-2637-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053597298
241 https://doi.org/10.1007/s11356-014-2637-x
242 rdf:type schema:CreativeWork
243 sg:pub.10.1007/s11356-014-2679-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009251760
244 https://doi.org/10.1007/s11356-014-2679-0
245 rdf:type schema:CreativeWork
246 sg:pub.10.1007/s11431-009-0349-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032396526
247 https://doi.org/10.1007/s11431-009-0349-0
248 rdf:type schema:CreativeWork
249 sg:pub.10.1007/s11431-009-0350-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050047728
250 https://doi.org/10.1007/s11431-009-0350-7
251 rdf:type schema:CreativeWork
252 grid-institutes:grid.255986.5 schema:alternateName Department of Scientific computing, Florida State University, 36000, Tallahassee, USA
253 schema:name Department of Scientific computing, Florida State University, 36000, Tallahassee, USA
254 School of hydropower and information engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
255 rdf:type schema:Organization
256 grid-institutes:grid.49470.3e schema:alternateName State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China
257 schema:name Department of Scientific computing, Florida State University, 36000, Tallahassee, USA
258 State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China
259 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...