Response of antioxidant enzymes in Nicotiana tabacum clones during phytoextraction of heavy metals View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-05-14

AUTHORS

Lyudmila Lyubenova, Erika Nehnevajova, Rolf Herzig, Peter Schröder

ABSTRACT

Background, aim, and scopeTobacco, Nicotiana tabacum, is a widely used model plant for growth on heavy-metal-contaminated sites. Its high biomass and deep rooting system make it interesting for phytoextraction. In the present study, we investigated the antioxidative activities and glutathione-dependent enzymes of different tobacco clones optimized for better Cd and Zn accumulation in order to characterize their performance in the field.Main featuresThe improved heavy metal resistance also makes the investigated tobacco clones interesting for understanding the plant defense enzyme system in general. Freshly harvested plant material (N. tabacum leaves) was used to investigate the antioxidative cascade in plants grown on heavy metal contaminated sites with and without amendments of different ammonium nitrate and ammonium sulfate fertilizers.Materials and methodsPlants were grown on heavily polluted soils in north-east Switzerland. Leaves were harvested at the field site and directly deep frozen in liquid N2. Studies were concentrated on the antioxidative enzymes of the Halliwell–Asada cycle, and spectrophotometric measurements of catalase (CAT, EC 1.11.1.6), ascorbate peroxidase (APX, EC 1.11.1.11), superoxide dismutase (SOD, EC 1.15.1.1), glutathione peroxidase (GPX, EC 1.11.1.9), glutathione reductase (GR, EC 1.6.4.2), glutathione S-transferase (GST, EC 2.5.1.18) were performed.Results and discussionWe tried to explain the relationship between fertilizer amendments and the activity of the enzymatic defense systems. When tobacco (N. tabacum) plants originating from different mutants were grown under field conditions with varying fertilizer application, the uptake of cadmium and zinc from soil increased with increasing biomass. Depending on Cd and Zn uptake, several antioxidant enzymes showed significantly different activities. Whereas SOD and CAT were usually elevated, several other enzymes, and isoforms of GST were strongly inhibited.ConclusionsHeavy metal uptake represents severe stress to plants, and specific antioxidative enzymes are induced at the cost of more general reactions of the Halliwell–Asada cycle. In well-supplied plants, the glutathione level remains more or less unchanged. The lack of certain glutathione S-transferases upon exposure to heavy metals might be problematic in cases when organic pollutants coincide with heavy metal pollution. When planning phytoremediation of sites, mixed pollution scenarios have to be foreseen and plants should be selected according to both, their stress resistance and hyperaccumulative capacity. More... »

PAGES

573-581

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11356-009-0175-8

DOI

http://dx.doi.org/10.1007/s11356-009-0175-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034671979

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19440744


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Plant Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antioxidants", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biodegradation, Environmental", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation, Plant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metals, Heavy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oxidative Stress", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Soil Pollutants", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tissue Culture Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tobacco", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department Microbe Plant Interactions, Helmholtz Zentrum M\u00fcnchen, German Research Center for Environmental Health, Ingolst\u00e4dter Landstr. 1, 85764, Neuerberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.4567.0", 
          "name": [
            "Department Microbe Plant Interactions, Helmholtz Zentrum M\u00fcnchen, German Research Center for Environmental Health, Ingolst\u00e4dter Landstr. 1, 85764, Neuerberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lyubenova", 
        "givenName": "Lyudmila", 
        "id": "sg:person.0631542131.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631542131.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Phytotech-Foundation & AGB, Quartiergasse 12, 3013, Bern, Switzerland", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Phytotech-Foundation & AGB, Quartiergasse 12, 3013, Bern, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nehnevajova", 
        "givenName": "Erika", 
        "id": "sg:person.0737503253.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737503253.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Phytotech-Foundation & AGB, Quartiergasse 12, 3013, Bern, Switzerland", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Phytotech-Foundation & AGB, Quartiergasse 12, 3013, Bern, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Herzig", 
        "givenName": "Rolf", 
        "id": "sg:person.01271635611.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271635611.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department Microbe Plant Interactions, Helmholtz Zentrum M\u00fcnchen, German Research Center for Environmental Health, Ingolst\u00e4dter Landstr. 1, 85764, Neuerberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.4567.0", 
          "name": [
            "Department Microbe Plant Interactions, Helmholtz Zentrum M\u00fcnchen, German Research Center for Environmental Health, Ingolst\u00e4dter Landstr. 1, 85764, Neuerberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schr\u00f6der", 
        "givenName": "Peter", 
        "id": "sg:person.0764103643.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764103643.97"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02987732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030107689", 
          "https://doi.org/10.1007/bf02987732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00196564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050079107", 
          "https://doi.org/10.1007/bf00196564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1004346905592", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024371869", 
          "https://doi.org/10.1023/a:1004346905592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1005958711207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039957057", 
          "https://doi.org/10.1023/a:1005958711207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1065/espr2002.10.138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019709542", 
          "https://doi.org/10.1065/espr2002.10.138"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-05-14", 
    "datePublishedReg": "2009-05-14", 
    "description": "Background, aim, and scopeTobacco, Nicotiana tabacum, is a widely used model plant for growth on heavy-metal-contaminated sites. Its high biomass and deep rooting system make it interesting for phytoextraction. In the present study, we investigated the antioxidative activities and glutathione-dependent enzymes of different tobacco clones optimized for better Cd and Zn accumulation in order to characterize their performance in the field.Main featuresThe improved heavy metal resistance also makes the investigated tobacco clones interesting for understanding the plant defense enzyme system in general. Freshly harvested plant material (N. tabacum leaves) was used to investigate the antioxidative cascade in plants grown on heavy metal contaminated sites with and without amendments of different ammonium nitrate and ammonium sulfate fertilizers.Materials and methodsPlants were grown on heavily polluted soils in north-east Switzerland. Leaves were harvested at the field site and directly deep frozen in liquid N2. Studies were concentrated on the antioxidative enzymes of the Halliwell\u2013Asada cycle, and spectrophotometric measurements of catalase (CAT, EC 1.11.1.6), ascorbate peroxidase (APX, EC 1.11.1.11), superoxide dismutase (SOD, EC 1.15.1.1), glutathione peroxidase (GPX, EC 1.11.1.9), glutathione reductase (GR, EC 1.6.4.2), glutathione S-transferase (GST, EC 2.5.1.18) were performed.Results and discussionWe tried to explain the relationship between fertilizer amendments and the activity of the enzymatic defense systems. When tobacco (N. tabacum) plants originating from different mutants were grown under field conditions with varying fertilizer application, the uptake of cadmium and zinc from soil increased with increasing biomass. Depending on Cd and Zn uptake, several antioxidant enzymes showed significantly different activities. Whereas SOD and CAT were usually elevated, several other enzymes, and isoforms of GST were strongly inhibited.ConclusionsHeavy metal uptake represents severe stress to plants, and specific antioxidative enzymes are induced at the cost of more general reactions of the Halliwell\u2013Asada cycle. In well-supplied plants, the glutathione level remains more or less unchanged. The lack of certain glutathione S-transferases upon exposure to heavy metals might be problematic in cases when organic pollutants coincide with heavy metal pollution. When planning phytoremediation of sites, mixed pollution scenarios have to be foreseen and plants should be selected according to both, their stress resistance and hyperaccumulative capacity.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11356-009-0175-8", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1113424", 
        "issn": [
          "0944-1344", 
          "1614-7499"
        ], 
        "name": "Environmental Science and Pollution Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "keywords": [
      "Halliwell-Asada cycle", 
      "glutathione S-transferase", 
      "tobacco clones", 
      "certain glutathione S-transferases", 
      "antioxidative enzymes", 
      "S-transferase", 
      "heavy metal resistance", 
      "antioxidant enzymes", 
      "model plant", 
      "tobacco plants", 
      "Nicotiana tabacum", 
      "stress resistance", 
      "glutathione-dependent enzymes", 
      "enzymatic defense system", 
      "deep rooting system", 
      "ascorbate peroxidase", 
      "north-east Switzerland", 
      "phytoremediation of sites", 
      "different mutants", 
      "metal resistance", 
      "higher biomass", 
      "Zn accumulation", 
      "plants", 
      "heavy metals", 
      "plant material", 
      "rooting system", 
      "enzyme", 
      "enzyme system", 
      "glutathione reductase", 
      "defense system", 
      "clones", 
      "metal uptake", 
      "fertilizer amendments", 
      "heavy metal pollution", 
      "field conditions", 
      "polluted soil", 
      "phytoextraction", 
      "ammonium sulfate fertilizer", 
      "severe stress", 
      "field sites", 
      "metal pollution", 
      "uptake of cadmium", 
      "biomass", 
      "sulfate fertilizer", 
      "tabacum", 
      "MethodsPlants", 
      "glutathione peroxidase", 
      "mutants", 
      "sites", 
      "peroxidase", 
      "measurement of catalase", 
      "fertilizer application", 
      "glutathione levels", 
      "leaves", 
      "phytoremediation", 
      "isoforms", 
      "uptake", 
      "reductase", 
      "soil", 
      "GST", 
      "activity", 
      "cascade", 
      "catalase", 
      "more general reactions", 
      "accumulation", 
      "cycle", 
      "resistance", 
      "dismutase", 
      "growth", 
      "present study", 
      "fertilizer", 
      "different activities", 
      "SOD", 
      "pollution scenarios", 
      "stress", 
      "antioxidative activity", 
      "amendments", 
      "ammonium nitrate", 
      "response", 
      "better Cd", 
      "cadmium", 
      "Cd", 
      "nitrate", 
      "zinc", 
      "levels", 
      "study", 
      "pollution", 
      "exposure", 
      "system", 
      "organic pollutants", 
      "cats", 
      "pollutants", 
      "Zn", 
      "liquid N2", 
      "lack", 
      "capacity", 
      "conditions", 
      "relationship", 
      "general reaction", 
      "metals", 
      "results", 
      "background", 
      "DiscussionWe", 
      "reaction", 
      "Switzerland", 
      "order", 
      "field", 
      "scenarios", 
      "applications", 
      "N2", 
      "materials", 
      "cost", 
      "cases", 
      "measurements", 
      "performance"
    ], 
    "name": "Response of antioxidant enzymes in Nicotiana tabacum clones during phytoextraction of heavy metals", 
    "pagination": "573-581", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034671979"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11356-009-0175-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19440744"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11356-009-0175-8", 
      "https://app.dimensions.ai/details/publication/pub.1034671979"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_501.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11356-009-0175-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11356-009-0175-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11356-009-0175-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11356-009-0175-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11356-009-0175-8'


 

This table displays all metadata directly associated to this object as RDF triples.

252 TRIPLES      21 PREDICATES      153 URIs      140 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11356-009-0175-8 schema:about N06e27f80fea743f492f7c557b3c8c2a8
2 N1876cd695c564194bd103ec27d98d424
3 N452cc25ff2cb41e8b27380509f267dbc
4 N609a093923dd4ed18ae4ed5d16c23a21
5 N7cbf478f39fd42b28a0162e728255091
6 N7d0c5759f0cd4315882624412c0698bb
7 N81f02d92e5ae49eab171dad0419c357d
8 Ncc78c170479440a8b27e09089ff21c7e
9 anzsrc-for:06
10 anzsrc-for:0607
11 schema:author Nde2f716250214e53ba00dca5a3bd5428
12 schema:citation sg:pub.10.1007/bf00196564
13 sg:pub.10.1007/bf02987732
14 sg:pub.10.1023/a:1004346905592
15 sg:pub.10.1023/a:1005958711207
16 sg:pub.10.1065/espr2002.10.138
17 schema:datePublished 2009-05-14
18 schema:datePublishedReg 2009-05-14
19 schema:description Background, aim, and scopeTobacco, Nicotiana tabacum, is a widely used model plant for growth on heavy-metal-contaminated sites. Its high biomass and deep rooting system make it interesting for phytoextraction. In the present study, we investigated the antioxidative activities and glutathione-dependent enzymes of different tobacco clones optimized for better Cd and Zn accumulation in order to characterize their performance in the field.Main featuresThe improved heavy metal resistance also makes the investigated tobacco clones interesting for understanding the plant defense enzyme system in general. Freshly harvested plant material (N. tabacum leaves) was used to investigate the antioxidative cascade in plants grown on heavy metal contaminated sites with and without amendments of different ammonium nitrate and ammonium sulfate fertilizers.Materials and methodsPlants were grown on heavily polluted soils in north-east Switzerland. Leaves were harvested at the field site and directly deep frozen in liquid N2. Studies were concentrated on the antioxidative enzymes of the Halliwell–Asada cycle, and spectrophotometric measurements of catalase (CAT, EC 1.11.1.6), ascorbate peroxidase (APX, EC 1.11.1.11), superoxide dismutase (SOD, EC 1.15.1.1), glutathione peroxidase (GPX, EC 1.11.1.9), glutathione reductase (GR, EC 1.6.4.2), glutathione S-transferase (GST, EC 2.5.1.18) were performed.Results and discussionWe tried to explain the relationship between fertilizer amendments and the activity of the enzymatic defense systems. When tobacco (N. tabacum) plants originating from different mutants were grown under field conditions with varying fertilizer application, the uptake of cadmium and zinc from soil increased with increasing biomass. Depending on Cd and Zn uptake, several antioxidant enzymes showed significantly different activities. Whereas SOD and CAT were usually elevated, several other enzymes, and isoforms of GST were strongly inhibited.ConclusionsHeavy metal uptake represents severe stress to plants, and specific antioxidative enzymes are induced at the cost of more general reactions of the Halliwell–Asada cycle. In well-supplied plants, the glutathione level remains more or less unchanged. The lack of certain glutathione S-transferases upon exposure to heavy metals might be problematic in cases when organic pollutants coincide with heavy metal pollution. When planning phytoremediation of sites, mixed pollution scenarios have to be foreseen and plants should be selected according to both, their stress resistance and hyperaccumulative capacity.
20 schema:genre article
21 schema:isAccessibleForFree false
22 schema:isPartOf N0f5ae066c84e45d4a5e5178e2927d8b6
23 N5ab8758f92ab47afaffa05d872e45418
24 sg:journal.1113424
25 schema:keywords Cd
26 DiscussionWe
27 GST
28 Halliwell-Asada cycle
29 MethodsPlants
30 N2
31 Nicotiana tabacum
32 S-transferase
33 SOD
34 Switzerland
35 Zn
36 Zn accumulation
37 accumulation
38 activity
39 amendments
40 ammonium nitrate
41 ammonium sulfate fertilizer
42 antioxidant enzymes
43 antioxidative activity
44 antioxidative enzymes
45 applications
46 ascorbate peroxidase
47 background
48 better Cd
49 biomass
50 cadmium
51 capacity
52 cascade
53 cases
54 catalase
55 cats
56 certain glutathione S-transferases
57 clones
58 conditions
59 cost
60 cycle
61 deep rooting system
62 defense system
63 different activities
64 different mutants
65 dismutase
66 enzymatic defense system
67 enzyme
68 enzyme system
69 exposure
70 fertilizer
71 fertilizer amendments
72 fertilizer application
73 field
74 field conditions
75 field sites
76 general reaction
77 glutathione S-transferase
78 glutathione levels
79 glutathione peroxidase
80 glutathione reductase
81 glutathione-dependent enzymes
82 growth
83 heavy metal pollution
84 heavy metal resistance
85 heavy metals
86 higher biomass
87 isoforms
88 lack
89 leaves
90 levels
91 liquid N2
92 materials
93 measurement of catalase
94 measurements
95 metal pollution
96 metal resistance
97 metal uptake
98 metals
99 model plant
100 more general reactions
101 mutants
102 nitrate
103 north-east Switzerland
104 order
105 organic pollutants
106 performance
107 peroxidase
108 phytoextraction
109 phytoremediation
110 phytoremediation of sites
111 plant material
112 plants
113 pollutants
114 polluted soil
115 pollution
116 pollution scenarios
117 present study
118 reaction
119 reductase
120 relationship
121 resistance
122 response
123 results
124 rooting system
125 scenarios
126 severe stress
127 sites
128 soil
129 stress
130 stress resistance
131 study
132 sulfate fertilizer
133 system
134 tabacum
135 tobacco clones
136 tobacco plants
137 uptake
138 uptake of cadmium
139 zinc
140 schema:name Response of antioxidant enzymes in Nicotiana tabacum clones during phytoextraction of heavy metals
141 schema:pagination 573-581
142 schema:productId N3ca5532b153c4bed90ad9ce6a41bcec7
143 Nc099b8416c07447ab6b65f0e61b064dd
144 Nfb148687e02e43e0a70d30cc2c006c64
145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034671979
146 https://doi.org/10.1007/s11356-009-0175-8
147 schema:sdDatePublished 2022-09-02T15:54
148 schema:sdLicense https://scigraph.springernature.com/explorer/license/
149 schema:sdPublisher N83a5c95766224e359d088058a9132f85
150 schema:url https://doi.org/10.1007/s11356-009-0175-8
151 sgo:license sg:explorer/license/
152 sgo:sdDataset articles
153 rdf:type schema:ScholarlyArticle
154 N06e27f80fea743f492f7c557b3c8c2a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Tissue Culture Techniques
156 rdf:type schema:DefinedTerm
157 N0f5ae066c84e45d4a5e5178e2927d8b6 schema:volumeNumber 16
158 rdf:type schema:PublicationVolume
159 N1876cd695c564194bd103ec27d98d424 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Biodegradation, Environmental
161 rdf:type schema:DefinedTerm
162 N3ca5532b153c4bed90ad9ce6a41bcec7 schema:name pubmed_id
163 schema:value 19440744
164 rdf:type schema:PropertyValue
165 N452cc25ff2cb41e8b27380509f267dbc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Soil Pollutants
167 rdf:type schema:DefinedTerm
168 N4d5bdc782b014ca2a44125943e5a0973 rdf:first sg:person.0764103643.97
169 rdf:rest rdf:nil
170 N5ab8758f92ab47afaffa05d872e45418 schema:issueNumber 5
171 rdf:type schema:PublicationIssue
172 N609a093923dd4ed18ae4ed5d16c23a21 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Gene Expression Regulation, Plant
174 rdf:type schema:DefinedTerm
175 N7cbf478f39fd42b28a0162e728255091 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Oxidative Stress
177 rdf:type schema:DefinedTerm
178 N7d0c5759f0cd4315882624412c0698bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Metals, Heavy
180 rdf:type schema:DefinedTerm
181 N81f02d92e5ae49eab171dad0419c357d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Antioxidants
183 rdf:type schema:DefinedTerm
184 N83a5c95766224e359d088058a9132f85 schema:name Springer Nature - SN SciGraph project
185 rdf:type schema:Organization
186 N84d040aa5bbc469b92f9b273421c9b66 rdf:first sg:person.0737503253.31
187 rdf:rest N856f33579dc143dfa006a02afc797f6b
188 N856f33579dc143dfa006a02afc797f6b rdf:first sg:person.01271635611.70
189 rdf:rest N4d5bdc782b014ca2a44125943e5a0973
190 Nc099b8416c07447ab6b65f0e61b064dd schema:name doi
191 schema:value 10.1007/s11356-009-0175-8
192 rdf:type schema:PropertyValue
193 Ncc78c170479440a8b27e09089ff21c7e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
194 schema:name Tobacco
195 rdf:type schema:DefinedTerm
196 Nde2f716250214e53ba00dca5a3bd5428 rdf:first sg:person.0631542131.36
197 rdf:rest N84d040aa5bbc469b92f9b273421c9b66
198 Nfb148687e02e43e0a70d30cc2c006c64 schema:name dimensions_id
199 schema:value pub.1034671979
200 rdf:type schema:PropertyValue
201 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
202 schema:name Biological Sciences
203 rdf:type schema:DefinedTerm
204 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
205 schema:name Plant Biology
206 rdf:type schema:DefinedTerm
207 sg:journal.1113424 schema:issn 0944-1344
208 1614-7499
209 schema:name Environmental Science and Pollution Research
210 schema:publisher Springer Nature
211 rdf:type schema:Periodical
212 sg:person.01271635611.70 schema:affiliation grid-institutes:None
213 schema:familyName Herzig
214 schema:givenName Rolf
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271635611.70
216 rdf:type schema:Person
217 sg:person.0631542131.36 schema:affiliation grid-institutes:grid.4567.0
218 schema:familyName Lyubenova
219 schema:givenName Lyudmila
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631542131.36
221 rdf:type schema:Person
222 sg:person.0737503253.31 schema:affiliation grid-institutes:None
223 schema:familyName Nehnevajova
224 schema:givenName Erika
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737503253.31
226 rdf:type schema:Person
227 sg:person.0764103643.97 schema:affiliation grid-institutes:grid.4567.0
228 schema:familyName Schröder
229 schema:givenName Peter
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764103643.97
231 rdf:type schema:Person
232 sg:pub.10.1007/bf00196564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050079107
233 https://doi.org/10.1007/bf00196564
234 rdf:type schema:CreativeWork
235 sg:pub.10.1007/bf02987732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030107689
236 https://doi.org/10.1007/bf02987732
237 rdf:type schema:CreativeWork
238 sg:pub.10.1023/a:1004346905592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024371869
239 https://doi.org/10.1023/a:1004346905592
240 rdf:type schema:CreativeWork
241 sg:pub.10.1023/a:1005958711207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039957057
242 https://doi.org/10.1023/a:1005958711207
243 rdf:type schema:CreativeWork
244 sg:pub.10.1065/espr2002.10.138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019709542
245 https://doi.org/10.1065/espr2002.10.138
246 rdf:type schema:CreativeWork
247 grid-institutes:None schema:alternateName Phytotech-Foundation & AGB, Quartiergasse 12, 3013, Bern, Switzerland
248 schema:name Phytotech-Foundation & AGB, Quartiergasse 12, 3013, Bern, Switzerland
249 rdf:type schema:Organization
250 grid-institutes:grid.4567.0 schema:alternateName Department Microbe Plant Interactions, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuerberg, Germany
251 schema:name Department Microbe Plant Interactions, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuerberg, Germany
252 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...