Enhanced Pre-Strain Application for Goodman Data Generated with Vibration-Based Testing View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

K. Knapp, A. Palazotto, O. Scott-Emuakpor, C. Holycross

ABSTRACT

Imparting residual stress is an essential step in the generation of Goodman data via Air Force Research Laboratory’s vibration-based fatigue test. Conventional Goodman data is constructed through uniaxial fatigue testing at a rate of 40 Hz, while the vibration-based testing excites stresses at 1,600 Hz in a stress state similar to those of gas turbine engine (GTE) airfoils in service. Fully reversed oscillating fatigue loads are combined with a steady residual stress imparted by a preliminary plastic straining procedure, and a finite element model (FEM) is used to predict the residual stress distribution at the fatigue zone of the sample. The goal of this work is enhancing the Pre-strain procedure that imparts residual stresses to develop a less conservative design approach that captures GTE phenomena on a modified Goodman line. Improvements were made to the FEM by more effectively incorporating empirical tensile stress-strain behavior, in addition to more accurately representing the pressures and forces acting on the specimen during monotonic loading. Results are demonstrated on Aluminum 6061-T6 by comparing strain field results from digital image correlation to FEM analysis. The converged FEM solution had a standard deviation in εyy of 2,557 microstrain and predicted a residual σyy of 73.91 MPa, while the optimized solution had a standard deviation in εyy of 495.2 microstrain (akin to the experimental variation of 376.1 microstrain) and predicted a residual σyy of 31.03 MPa. More... »

PAGES

1-14

References to SciGraph publications

  • 2011-07. Size Estimation of Fatigue Crack Appearing at Bolt Joints of Aluminum Alloy Plates by Synchronized SAW Measurement in EXPERIMENTAL MECHANICS
  • 2012-06. Quasi-Static and High-Strain-Rate Experimental Microstructural Investigation of a High-Strength Aluminum Alloy in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2016-11. User Influence on Two Complementary Residual Stress Determination Methods: Contour Method and Incremental X-Ray Diffraction in EXPERIMENTAL MECHANICS
  • 2015-03. Estimation of Uncertainty for Contour Method Residual Stress Measurements in EXPERIMENTAL MECHANICS
  • 2007-05. High cycle fatigue characteristics of 2124-T851 aluminum alloy in FRONTIERS OF MATERIALS SCIENCE IN CHINA
  • 2015-07. A New Mechanical Method for Biaxial Residual Stress Mapping in EXPERIMENTAL MECHANICS
  • 2016-11. Large Strain and Small-Scale Biaxial Testing of Sheet Metals in EXPERIMENTAL MECHANICS
  • 2014-11. Effects of particle size and properties on the microstructures, mechanical properties, and fracture mechanisms of 7075Al hybrid composites prepared by squeeze casting in JOURNAL OF MATERIALS SCIENCE
  • 2010-04. Tensile Deformation and Fracture Mechanism of Bulk Bimodal Ultrafine-Grained Al-Mg Alloy in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2016-10. High Spatial Resolution Evaluation of Residual Stresses in Shot Peened Specimens Containing Sharp and Blunt Notches by Micro-hole Drilling, Micro-slot Cutting and Micro-X-ray Diffraction Methods in EXPERIMENTAL MECHANICS
  • 2012-03. Development of a Closed-Loop High-Cycle Resonant Fatigue Testing System in EXPERIMENTAL MECHANICS
  • 2011-07. Bayesian Statistic Based Multivariate Gaussian Process Approach for Offline/Online Fatigue Crack Growth Prediction in EXPERIMENTAL MECHANICS
  • 2018-07. Dynamic Response of Aluminum 5083 During Taylor Impact Using Digital Image Correlation in EXPERIMENTAL MECHANICS
  • 2015-09. Measurement of Highly Non-Uniform Residual Stress Fields with Reduced Plastic Error in EXPERIMENTAL MECHANICS
  • 2017-11. Incremental Hole Drilling for Residual Stress Analysis of Thin Walled Components with Regard to Plasticity Effects in EXPERIMENTAL MECHANICS
  • 2007-12. Design of an Impact Loading Machine Based on a Flywheel Device: Application to the Fatigue Resistance of the High Rate Pre-straining Sensitivity of Aluminium Alloys in EXPERIMENTAL MECHANICS
  • 2003-06. A study of the strength of P/M 6061Al and composites during high strain rate superplastic deformation in JOURNAL OF MATERIALS SCIENCE
  • 2016-11. Error and Uncertainty Analysis of Non-Uniform Residual Stress Evaluation by Using the Ring-Core Method in EXPERIMENTAL MECHANICS
  • 2011-05. Microstructural Characterization of a High-Strength Aluminum Alloy Subjected to High Strain-Rate Impact in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2014-03. Mechanical characterisation of aluminium alloy 7449-T7651 at high strain rates and elevated temperatures using split hopkinson bar testing in EXPERIMENTAL TECHNIQUES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11340-018-00450-7

    DOI

    http://dx.doi.org/10.1007/s11340-018-00450-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111312997


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0905", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Civil Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "United States Air Force Academy", 
              "id": "https://www.grid.ac/institutes/grid.265457.7", 
              "name": [
                "Department of Engineering Mechanics, United States Air Force Academy, 80840, Colorado Springs, CO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Knapp", 
            "givenName": "K.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Air Force Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.427848.5", 
              "name": [
                "Department of Aeronautics & Astronautics, Air Force Institute of Technology, Wright-Patterson AFB, 45433, Dayton, OH, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Palazotto", 
            "givenName": "A.", 
            "id": "sg:person.011143462715.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011143462715.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Air Force Research Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.417730.6", 
              "name": [
                "Air Force Research Laboratory, Wright-Patterson AFB, 45433, Dayton, OH, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Scott-Emuakpor", 
            "givenName": "O.", 
            "id": "sg:person.014265314515.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014265314515.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Air Force Research Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.417730.6", 
              "name": [
                "Air Force Research Laboratory, Wright-Patterson AFB, 45433, Dayton, OH, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Holycross", 
            "givenName": "C.", 
            "id": "sg:person.013025237133.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013025237133.03"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11340-014-9971-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000646618", 
              "https://doi.org/10.1007/s11340-014-9971-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11340-010-9383-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007303471", 
              "https://doi.org/10.1007/s11340-010-9383-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11340-016-0189-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007661858", 
              "https://doi.org/10.1007/s11340-016-0189-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11340-016-0189-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007661858", 
              "https://doi.org/10.1007/s11340-016-0189-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11340-016-0182-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008615623", 
              "https://doi.org/10.1007/s11340-016-0182-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11340-016-0182-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008615623", 
              "https://doi.org/10.1007/s11340-016-0182-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-010-0476-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008959571", 
              "https://doi.org/10.1007/s11661-010-0476-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10853-014-8496-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012385495", 
              "https://doi.org/10.1007/s10853-014-8496-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11340-011-9486-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012789067", 
              "https://doi.org/10.1007/s11340-011-9486-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2514/6.2016-0925", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017575988"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11340-016-0150-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019400184", 
              "https://doi.org/10.1007/s11340-016-0150-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11340-016-0150-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019400184", 
              "https://doi.org/10.1007/s11340-016-0150-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijfatigue.2003.10.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021796614"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/ffe.12286", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023272509"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11340-007-9082-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027667964", 
              "https://doi.org/10.1007/s11340-007-9082-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11340-015-0013-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028660245", 
              "https://doi.org/10.1007/s11340-015-0013-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1111/j.1747-1567.2011.00796.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029597480", 
              "https://doi.org/10.1111/j.1747-1567.2011.00796.x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2514/6.2015-0891", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031387098"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-011-1064-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032242284", 
              "https://doi.org/10.1007/s11661-011-1064-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-009-0007-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032475839", 
              "https://doi.org/10.1007/s11661-009-0007-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-009-0007-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032475839", 
              "https://doi.org/10.1007/s11661-009-0007-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11706-007-0030-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034374760", 
              "https://doi.org/10.1007/s11706-007-0030-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1023973622567", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037140105", 
              "https://doi.org/10.1023/a:1023973622567"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-460x(71)90652-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045727565"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-460x(71)90652-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045727565"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11340-015-0025-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045761826", 
              "https://doi.org/10.1007/s11340-015-0025-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11340-010-9394-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046666395", 
              "https://doi.org/10.1007/s11340-010-9394-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11340-016-0185-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047452649", 
              "https://doi.org/10.1007/s11340-016-0185-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11340-016-0185-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047452649", 
              "https://doi.org/10.1007/s11340-016-0185-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.1788687", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062074533"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.1836791", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062075225"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1520/stp14974s", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1088503917"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11340-017-0318-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090910580", 
              "https://doi.org/10.1007/s11340-017-0318-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11340-017-0318-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090910580", 
              "https://doi.org/10.1007/s11340-017-0318-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11340-018-0392-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103879921", 
              "https://doi.org/10.1007/s11340-018-0392-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11340-018-0392-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103879921", 
              "https://doi.org/10.1007/s11340-018-0392-5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02", 
        "datePublishedReg": "2019-02-01", 
        "description": "Imparting residual stress is an essential step in the generation of Goodman data via Air Force Research Laboratory\u2019s vibration-based fatigue test. Conventional Goodman data is constructed through uniaxial fatigue testing at a rate of 40 Hz, while the vibration-based testing excites stresses at 1,600 Hz in a stress state similar to those of gas turbine engine (GTE) airfoils in service. Fully reversed oscillating fatigue loads are combined with a steady residual stress imparted by a preliminary plastic straining procedure, and a finite element model (FEM) is used to predict the residual stress distribution at the fatigue zone of the sample. The goal of this work is enhancing the Pre-strain procedure that imparts residual stresses to develop a less conservative design approach that captures GTE phenomena on a modified Goodman line. Improvements were made to the FEM by more effectively incorporating empirical tensile stress-strain behavior, in addition to more accurately representing the pressures and forces acting on the specimen during monotonic loading. Results are demonstrated on Aluminum 6061-T6 by comparing strain field results from digital image correlation to FEM analysis. The converged FEM solution had a standard deviation in \u03b5yy of 2,557 microstrain and predicted a residual \u03c3yy of 73.91 MPa, while the optimized solution had a standard deviation in \u03b5yy of 495.2 microstrain (akin to the experimental variation of 376.1 microstrain) and predicted a residual \u03c3yy of 31.03 MPa.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11340-018-00450-7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1039819", 
            "issn": [
              "0014-4851", 
              "1741-2765"
            ], 
            "name": "Experimental Mechanics", 
            "type": "Periodical"
          }
        ], 
        "name": "Enhanced Pre-Strain Application for Goodman Data Generated with Vibration-Based Testing", 
        "pagination": "1-14", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "cd17e7d6cdf72d3ced9445eccd642dbf993a54840d97c6aad3082e97df01edcc"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11340-018-00450-7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111312997"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11340-018-00450-7", 
          "https://app.dimensions.ai/details/publication/pub.1111312997"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:37", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000315_0000000315/records_6302_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs11340-018-00450-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11340-018-00450-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11340-018-00450-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11340-018-00450-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11340-018-00450-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    185 TRIPLES      21 PREDICATES      53 URIs      17 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11340-018-00450-7 schema:about anzsrc-for:09
    2 anzsrc-for:0905
    3 schema:author N0036fe7fba094d9e938ad6711328b016
    4 schema:citation sg:pub.10.1007/s10853-014-8496-5
    5 sg:pub.10.1007/s11340-007-9082-4
    6 sg:pub.10.1007/s11340-010-9383-x
    7 sg:pub.10.1007/s11340-010-9394-7
    8 sg:pub.10.1007/s11340-011-9486-z
    9 sg:pub.10.1007/s11340-014-9971-2
    10 sg:pub.10.1007/s11340-015-0013-5
    11 sg:pub.10.1007/s11340-015-0025-1
    12 sg:pub.10.1007/s11340-016-0150-5
    13 sg:pub.10.1007/s11340-016-0182-x
    14 sg:pub.10.1007/s11340-016-0185-7
    15 sg:pub.10.1007/s11340-016-0189-3
    16 sg:pub.10.1007/s11340-017-0318-7
    17 sg:pub.10.1007/s11340-018-0392-5
    18 sg:pub.10.1007/s11661-009-0007-y
    19 sg:pub.10.1007/s11661-010-0476-z
    20 sg:pub.10.1007/s11661-011-1064-6
    21 sg:pub.10.1007/s11706-007-0030-0
    22 sg:pub.10.1023/a:1023973622567
    23 sg:pub.10.1111/j.1747-1567.2011.00796.x
    24 https://doi.org/10.1016/0022-460x(71)90652-3
    25 https://doi.org/10.1016/j.ijfatigue.2003.10.012
    26 https://doi.org/10.1111/ffe.12286
    27 https://doi.org/10.1115/1.1788687
    28 https://doi.org/10.1115/1.1836791
    29 https://doi.org/10.1520/stp14974s
    30 https://doi.org/10.2514/6.2015-0891
    31 https://doi.org/10.2514/6.2016-0925
    32 schema:datePublished 2019-02
    33 schema:datePublishedReg 2019-02-01
    34 schema:description Imparting residual stress is an essential step in the generation of Goodman data via Air Force Research Laboratory’s vibration-based fatigue test. Conventional Goodman data is constructed through uniaxial fatigue testing at a rate of 40 Hz, while the vibration-based testing excites stresses at 1,600 Hz in a stress state similar to those of gas turbine engine (GTE) airfoils in service. Fully reversed oscillating fatigue loads are combined with a steady residual stress imparted by a preliminary plastic straining procedure, and a finite element model (FEM) is used to predict the residual stress distribution at the fatigue zone of the sample. The goal of this work is enhancing the Pre-strain procedure that imparts residual stresses to develop a less conservative design approach that captures GTE phenomena on a modified Goodman line. Improvements were made to the FEM by more effectively incorporating empirical tensile stress-strain behavior, in addition to more accurately representing the pressures and forces acting on the specimen during monotonic loading. Results are demonstrated on Aluminum 6061-T6 by comparing strain field results from digital image correlation to FEM analysis. The converged FEM solution had a standard deviation in εyy of 2,557 microstrain and predicted a residual σyy of 73.91 MPa, while the optimized solution had a standard deviation in εyy of 495.2 microstrain (akin to the experimental variation of 376.1 microstrain) and predicted a residual σyy of 31.03 MPa.
    35 schema:genre research_article
    36 schema:inLanguage en
    37 schema:isAccessibleForFree false
    38 schema:isPartOf sg:journal.1039819
    39 schema:name Enhanced Pre-Strain Application for Goodman Data Generated with Vibration-Based Testing
    40 schema:pagination 1-14
    41 schema:productId N3e9d709edd884c49a9144a2a07fac5f3
    42 N716fb5c4ab864a6b93eeb661eac0ace2
    43 Nb81e96c875384d468e9b4a6098227d33
    44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111312997
    45 https://doi.org/10.1007/s11340-018-00450-7
    46 schema:sdDatePublished 2019-04-11T08:37
    47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    48 schema:sdPublisher Nd97aad5f07824e18887f5481bbf5da04
    49 schema:url https://link.springer.com/10.1007%2Fs11340-018-00450-7
    50 sgo:license sg:explorer/license/
    51 sgo:sdDataset articles
    52 rdf:type schema:ScholarlyArticle
    53 N002d8926be5743e6ad75d5480e20c34d rdf:first sg:person.014265314515.47
    54 rdf:rest Nf43d5ab21d9a4e4b9cacd93e9fac2d33
    55 N0036fe7fba094d9e938ad6711328b016 rdf:first N9c7dc8d1a3a84da98839e00a1c1b50c9
    56 rdf:rest N79d6c7c57c57443ba96d7e512e16b006
    57 N3e9d709edd884c49a9144a2a07fac5f3 schema:name readcube_id
    58 schema:value cd17e7d6cdf72d3ced9445eccd642dbf993a54840d97c6aad3082e97df01edcc
    59 rdf:type schema:PropertyValue
    60 N716fb5c4ab864a6b93eeb661eac0ace2 schema:name doi
    61 schema:value 10.1007/s11340-018-00450-7
    62 rdf:type schema:PropertyValue
    63 N79d6c7c57c57443ba96d7e512e16b006 rdf:first sg:person.011143462715.37
    64 rdf:rest N002d8926be5743e6ad75d5480e20c34d
    65 N9c7dc8d1a3a84da98839e00a1c1b50c9 schema:affiliation https://www.grid.ac/institutes/grid.265457.7
    66 schema:familyName Knapp
    67 schema:givenName K.
    68 rdf:type schema:Person
    69 Nb81e96c875384d468e9b4a6098227d33 schema:name dimensions_id
    70 schema:value pub.1111312997
    71 rdf:type schema:PropertyValue
    72 Nd97aad5f07824e18887f5481bbf5da04 schema:name Springer Nature - SN SciGraph project
    73 rdf:type schema:Organization
    74 Nf43d5ab21d9a4e4b9cacd93e9fac2d33 rdf:first sg:person.013025237133.03
    75 rdf:rest rdf:nil
    76 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Engineering
    78 rdf:type schema:DefinedTerm
    79 anzsrc-for:0905 schema:inDefinedTermSet anzsrc-for:
    80 schema:name Civil Engineering
    81 rdf:type schema:DefinedTerm
    82 sg:journal.1039819 schema:issn 0014-4851
    83 1741-2765
    84 schema:name Experimental Mechanics
    85 rdf:type schema:Periodical
    86 sg:person.011143462715.37 schema:affiliation https://www.grid.ac/institutes/grid.427848.5
    87 schema:familyName Palazotto
    88 schema:givenName A.
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011143462715.37
    90 rdf:type schema:Person
    91 sg:person.013025237133.03 schema:affiliation https://www.grid.ac/institutes/grid.417730.6
    92 schema:familyName Holycross
    93 schema:givenName C.
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013025237133.03
    95 rdf:type schema:Person
    96 sg:person.014265314515.47 schema:affiliation https://www.grid.ac/institutes/grid.417730.6
    97 schema:familyName Scott-Emuakpor
    98 schema:givenName O.
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014265314515.47
    100 rdf:type schema:Person
    101 sg:pub.10.1007/s10853-014-8496-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012385495
    102 https://doi.org/10.1007/s10853-014-8496-5
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/s11340-007-9082-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027667964
    105 https://doi.org/10.1007/s11340-007-9082-4
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/s11340-010-9383-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007303471
    108 https://doi.org/10.1007/s11340-010-9383-x
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/s11340-010-9394-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046666395
    111 https://doi.org/10.1007/s11340-010-9394-7
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/s11340-011-9486-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1012789067
    114 https://doi.org/10.1007/s11340-011-9486-z
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/s11340-014-9971-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000646618
    117 https://doi.org/10.1007/s11340-014-9971-2
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/s11340-015-0013-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028660245
    120 https://doi.org/10.1007/s11340-015-0013-5
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/s11340-015-0025-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045761826
    123 https://doi.org/10.1007/s11340-015-0025-1
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/s11340-016-0150-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019400184
    126 https://doi.org/10.1007/s11340-016-0150-5
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/s11340-016-0182-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008615623
    129 https://doi.org/10.1007/s11340-016-0182-x
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/s11340-016-0185-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047452649
    132 https://doi.org/10.1007/s11340-016-0185-7
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/s11340-016-0189-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007661858
    135 https://doi.org/10.1007/s11340-016-0189-3
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/s11340-017-0318-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090910580
    138 https://doi.org/10.1007/s11340-017-0318-7
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/s11340-018-0392-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103879921
    141 https://doi.org/10.1007/s11340-018-0392-5
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/s11661-009-0007-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1032475839
    144 https://doi.org/10.1007/s11661-009-0007-y
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/s11661-010-0476-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1008959571
    147 https://doi.org/10.1007/s11661-010-0476-z
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/s11661-011-1064-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032242284
    150 https://doi.org/10.1007/s11661-011-1064-6
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/s11706-007-0030-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034374760
    153 https://doi.org/10.1007/s11706-007-0030-0
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1023/a:1023973622567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037140105
    156 https://doi.org/10.1023/a:1023973622567
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1111/j.1747-1567.2011.00796.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029597480
    159 https://doi.org/10.1111/j.1747-1567.2011.00796.x
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1016/0022-460x(71)90652-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045727565
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1016/j.ijfatigue.2003.10.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021796614
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1111/ffe.12286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023272509
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1115/1.1788687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062074533
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1115/1.1836791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062075225
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1520/stp14974s schema:sameAs https://app.dimensions.ai/details/publication/pub.1088503917
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.2514/6.2015-0891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031387098
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.2514/6.2016-0925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017575988
    176 rdf:type schema:CreativeWork
    177 https://www.grid.ac/institutes/grid.265457.7 schema:alternateName United States Air Force Academy
    178 schema:name Department of Engineering Mechanics, United States Air Force Academy, 80840, Colorado Springs, CO, USA
    179 rdf:type schema:Organization
    180 https://www.grid.ac/institutes/grid.417730.6 schema:alternateName Air Force Research Laboratory
    181 schema:name Air Force Research Laboratory, Wright-Patterson AFB, 45433, Dayton, OH, USA
    182 rdf:type schema:Organization
    183 https://www.grid.ac/institutes/grid.427848.5 schema:alternateName Air Force Institute of Technology
    184 schema:name Department of Aeronautics & Astronautics, Air Force Institute of Technology, Wright-Patterson AFB, 45433, Dayton, OH, USA
    185 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...