Statistical Creep Failure Time of Unidirectional CFRP View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-04

AUTHORS

M. Nakada, Y. Miyano

ABSTRACT

A prediction method for the statistical creep failure time of polymer composites using the statistical static strengths of polymer composites measured at various temperatures is proposed based on Christensen’s model of viscoelastic crack kinetics. Then the static strengths at various temperatures under tension loading along the longitudinal direction of unidirectional CFRP are measured experimentally and statistically using numerous resin impregnated carbon fiber strands (CFRP strands). The creep failure time of unidirectional CFRP is predicted statistically based on the prediction method using statistical static strengths at various temperatures. Finally, the creep failure times of unidirectional CFRP at a constant load and a temperature are measured experimentally and statistically using many CFRP strands for comparison with predicted values. Results show that the statistical creep failure time of unidirectional CFRP is predictable using the statistical static strengths of unidirectional CFRP, because the experimental creep failure times agree well with the predicted ones. More... »

PAGES

653-658

Journal

TITLE

Experimental Mechanics

ISSUE

4

VOLUME

56

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11340-015-0049-6

DOI

http://dx.doi.org/10.1007/s11340-015-0049-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017460608


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kanazawa Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.444537.5", 
          "name": [
            "Materials System Research Laboratory, Kanazawa Institute of Technology, 3-1 Yatsukaho, 924-0838, Hakusan, Ishikawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakada", 
        "givenName": "M.", 
        "id": "sg:person.012337516514.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012337516514.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kanazawa Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.444537.5", 
          "name": [
            "Materials System Research Laboratory, Kanazawa Institute of Technology, 3-1 Yatsukaho, 924-0838, Hakusan, Ishikawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miyano", 
        "givenName": "Y.", 
        "id": "sg:person.014750603631.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014750603631.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0266-3538(90)90042-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003280876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0266-3538(90)90042-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003280876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1163/156855199x00236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005164300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0263-8223(89)90074-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009833665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0263-8223(89)90074-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009833665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02317988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017023639", 
          "https://doi.org/10.1007/bf02317988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02317988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017023639", 
          "https://doi.org/10.1007/bf02317988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/002199802761405295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029171643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/002199802761405295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029171643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09243046.2013.777172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031846714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compscitech.2014.10.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044726493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09243046.2014.915099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044866096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10704-005-9062-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048304712", 
          "https://doi.org/10.1007/s10704-005-9062-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10704-005-9062-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048304712", 
          "https://doi.org/10.1007/s10704-005-9062-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0021998313515019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053784464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0021998313515019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053784464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0021998308093913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063621998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0021998308093913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063621998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/002199839703100605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063625048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/002199839703100605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063625048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0731684413493951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063839543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0731684413493951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063839543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0731684413493951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063839543"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-04", 
    "datePublishedReg": "2016-04-01", 
    "description": "A prediction method for the statistical creep failure time of polymer composites using the statistical static strengths of polymer composites measured at various temperatures is proposed based on Christensen\u2019s model of viscoelastic crack kinetics. Then the static strengths at various temperatures under tension loading along the longitudinal direction of unidirectional CFRP are measured experimentally and statistically using numerous resin impregnated carbon fiber strands (CFRP strands). The creep failure time of unidirectional CFRP is predicted statistically based on the prediction method using statistical static strengths at various temperatures. Finally, the creep failure times of unidirectional CFRP at a constant load and a temperature are measured experimentally and statistically using many CFRP strands for comparison with predicted values. Results show that the statistical creep failure time of unidirectional CFRP is predictable using the statistical static strengths of unidirectional CFRP, because the experimental creep failure times agree well with the predicted ones.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11340-015-0049-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1039819", 
        "issn": [
          "0014-4851", 
          "1741-2765"
        ], 
        "name": "Experimental Mechanics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "56"
      }
    ], 
    "name": "Statistical Creep Failure Time of Unidirectional CFRP", 
    "pagination": "653-658", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "53306da40b4a2e1a2b5bf7c56bb524223666647e0361bc022a37931372369d1b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11340-015-0049-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017460608"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11340-015-0049-6", 
      "https://app.dimensions.ai/details/publication/pub.1017460608"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000521.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11340-015-0049-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11340-015-0049-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11340-015-0049-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11340-015-0049-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11340-015-0049-6'


 

This table displays all metadata directly associated to this object as RDF triples.

109 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11340-015-0049-6 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N419a1cc872a64c5db2674f96abfde3da
4 schema:citation sg:pub.10.1007/bf02317988
5 sg:pub.10.1007/s10704-005-9062-6
6 https://doi.org/10.1016/0263-8223(89)90074-3
7 https://doi.org/10.1016/0266-3538(90)90042-4
8 https://doi.org/10.1016/j.compscitech.2014.10.015
9 https://doi.org/10.1080/09243046.2013.777172
10 https://doi.org/10.1080/09243046.2014.915099
11 https://doi.org/10.1163/156855199x00236
12 https://doi.org/10.1177/002199802761405295
13 https://doi.org/10.1177/0021998308093913
14 https://doi.org/10.1177/0021998313515019
15 https://doi.org/10.1177/002199839703100605
16 https://doi.org/10.1177/0731684413493951
17 schema:datePublished 2016-04
18 schema:datePublishedReg 2016-04-01
19 schema:description A prediction method for the statistical creep failure time of polymer composites using the statistical static strengths of polymer composites measured at various temperatures is proposed based on Christensen’s model of viscoelastic crack kinetics. Then the static strengths at various temperatures under tension loading along the longitudinal direction of unidirectional CFRP are measured experimentally and statistically using numerous resin impregnated carbon fiber strands (CFRP strands). The creep failure time of unidirectional CFRP is predicted statistically based on the prediction method using statistical static strengths at various temperatures. Finally, the creep failure times of unidirectional CFRP at a constant load and a temperature are measured experimentally and statistically using many CFRP strands for comparison with predicted values. Results show that the statistical creep failure time of unidirectional CFRP is predictable using the statistical static strengths of unidirectional CFRP, because the experimental creep failure times agree well with the predicted ones.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N01d4ce2e489043c4b3f2d75a9a352252
24 N5c35f191b2ff4e52b98bc37df7011feb
25 sg:journal.1039819
26 schema:name Statistical Creep Failure Time of Unidirectional CFRP
27 schema:pagination 653-658
28 schema:productId N6424b27c38b24708837d9c6ca5303dd2
29 N662c4bce18e941679eec6f18f85054ee
30 N7cac26cc1e5240fd8651780c4217a231
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017460608
32 https://doi.org/10.1007/s11340-015-0049-6
33 schema:sdDatePublished 2019-04-10T23:26
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N70732daf4f554f7fbf2f69d899475647
36 schema:url http://link.springer.com/10.1007%2Fs11340-015-0049-6
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N01d4ce2e489043c4b3f2d75a9a352252 schema:issueNumber 4
41 rdf:type schema:PublicationIssue
42 N419a1cc872a64c5db2674f96abfde3da rdf:first sg:person.012337516514.90
43 rdf:rest Ne2a18565c68b4bd9846e768d98b13c92
44 N5c35f191b2ff4e52b98bc37df7011feb schema:volumeNumber 56
45 rdf:type schema:PublicationVolume
46 N6424b27c38b24708837d9c6ca5303dd2 schema:name doi
47 schema:value 10.1007/s11340-015-0049-6
48 rdf:type schema:PropertyValue
49 N662c4bce18e941679eec6f18f85054ee schema:name dimensions_id
50 schema:value pub.1017460608
51 rdf:type schema:PropertyValue
52 N70732daf4f554f7fbf2f69d899475647 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N7cac26cc1e5240fd8651780c4217a231 schema:name readcube_id
55 schema:value 53306da40b4a2e1a2b5bf7c56bb524223666647e0361bc022a37931372369d1b
56 rdf:type schema:PropertyValue
57 Ne2a18565c68b4bd9846e768d98b13c92 rdf:first sg:person.014750603631.13
58 rdf:rest rdf:nil
59 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
60 schema:name Engineering
61 rdf:type schema:DefinedTerm
62 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
63 schema:name Materials Engineering
64 rdf:type schema:DefinedTerm
65 sg:journal.1039819 schema:issn 0014-4851
66 1741-2765
67 schema:name Experimental Mechanics
68 rdf:type schema:Periodical
69 sg:person.012337516514.90 schema:affiliation https://www.grid.ac/institutes/grid.444537.5
70 schema:familyName Nakada
71 schema:givenName M.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012337516514.90
73 rdf:type schema:Person
74 sg:person.014750603631.13 schema:affiliation https://www.grid.ac/institutes/grid.444537.5
75 schema:familyName Miyano
76 schema:givenName Y.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014750603631.13
78 rdf:type schema:Person
79 sg:pub.10.1007/bf02317988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017023639
80 https://doi.org/10.1007/bf02317988
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/s10704-005-9062-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048304712
83 https://doi.org/10.1007/s10704-005-9062-6
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/0263-8223(89)90074-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009833665
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/0266-3538(90)90042-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003280876
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/j.compscitech.2014.10.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044726493
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1080/09243046.2013.777172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031846714
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1080/09243046.2014.915099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044866096
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1163/156855199x00236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005164300
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1177/002199802761405295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029171643
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1177/0021998308093913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063621998
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1177/0021998313515019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053784464
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1177/002199839703100605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063625048
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1177/0731684413493951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063839543
106 rdf:type schema:CreativeWork
107 https://www.grid.ac/institutes/grid.444537.5 schema:alternateName Kanazawa Institute of Technology
108 schema:name Materials System Research Laboratory, Kanazawa Institute of Technology, 3-1 Yatsukaho, 924-0838, Hakusan, Ishikawa, Japan
109 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...