Quantifying Three-Dimensional Residual Stress Distributions Using Spatially-Resolved Diffraction Measurements and Finite Element Based Data Reduction View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-07-12

AUTHORS

J.-S. Park, U. Lienert, P. R. Dawson, M. P. Miller

ABSTRACT

Residual stress can play a significant role in the processing and performance of an engineered metallic component. The stress state within a polycrystalline part can vary significantly between its surface and its interior. To measure three-dimensional (3D) residual stress fields, a synchrotron x-ray diffraction-based experimental technique capable of non-destructively measuring a set of lattice strain pole figures (SPFs) at various surface and internal points within a component was developed. The resulting SPFs were used as input for a recently developed bi-scale optimization scheme McNelis et al. J Mech Phys Sol 61:428–1007 449 (2013) that combines crystal-scale measurements and continuum-scale constraints to determinethe 3D residual stress field in the component. To demonstrate this methodology, the 3D residual stress distribution was evaluated for an interference-fit sample fabricated from a low solvus high refractory (LSHR) polycrystalline Ni-base superalloy. More... »

PAGES

1491-1507

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11340-013-9771-0

DOI

http://dx.doi.org/10.1007/s11340-013-9771-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028544424


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA", 
          "id": "http://www.grid.ac/institutes/grid.187073.a", 
          "name": [
            "Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "J.-S.", 
        "id": "sg:person.011316214423.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011316214423.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Deutsches Elektronen-Synchrotron, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7683.a", 
          "name": [
            "Deutsches Elektronen-Synchrotron, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lienert", 
        "givenName": "U.", 
        "id": "sg:person.01166235061.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166235061.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dawson", 
        "givenName": "P. R.", 
        "id": "sg:person.011275534223.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011275534223.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miller", 
        "givenName": "M. P.", 
        "id": "sg:person.01235113703.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235113703.80"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02830344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008643906", 
          "https://doi.org/10.1007/bf02830344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-008-9639-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020850734", 
          "https://doi.org/10.1007/s11661-008-9639-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/proc-590-241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067946831", 
          "https://doi.org/10.1557/proc-590-241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11340-006-8250-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046092501", 
          "https://doi.org/10.1007/s11340-006-8250-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-9570-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020953271", 
          "https://doi.org/10.1007/978-1-4613-9570-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-07-12", 
    "datePublishedReg": "2013-07-12", 
    "description": "Residual stress can play a significant role in the processing and performance of an engineered metallic component. The stress state within a polycrystalline part can vary significantly between its surface and its interior. To measure three-dimensional (3D) residual stress fields, a synchrotron x-ray diffraction-based experimental technique capable of non-destructively measuring a set of lattice strain pole figures (SPFs) at various surface and internal points within a component was developed. The resulting SPFs were used as input for a recently developed bi-scale optimization scheme McNelis et al. J Mech Phys Sol 61:428\u20131007 449 (2013) that combines crystal-scale measurements and continuum-scale constraints to determinethe 3D residual stress field in the component. To demonstrate this methodology, the 3D residual stress distribution was evaluated for an interference-fit sample fabricated from a low solvus high refractory (LSHR) polycrystalline Ni-base superalloy.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11340-013-9771-0", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1039819", 
        "issn": [
          "0014-4851", 
          "1741-2765"
        ], 
        "name": "Experimental Mechanics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "53"
      }
    ], 
    "keywords": [
      "strain pole figures", 
      "residual stress field", 
      "residual stress distribution", 
      "stress distribution", 
      "three-dimensional residual stress field", 
      "three-dimensional residual stress distribution", 
      "stress field", 
      "polycrystalline Ni-base superalloys", 
      "lattice strain pole figures", 
      "Ni-base superalloys", 
      "residual stress", 
      "stress state", 
      "metallic components", 
      "pole figures", 
      "polycrystalline part", 
      "diffraction measurements", 
      "experimental techniques", 
      "internal points", 
      "surface", 
      "superalloy", 
      "measurements", 
      "field", 
      "sol", 
      "components", 
      "performance", 
      "distribution", 
      "Spatially", 
      "processing", 
      "data reduction", 
      "stress", 
      "et al", 
      "technique", 
      "significant role", 
      "input", 
      "methodology", 
      "al", 
      "interior", 
      "constraints", 
      "reduction", 
      "quantifying", 
      "point", 
      "set", 
      "figures", 
      "samples", 
      "part", 
      "state", 
      "role"
    ], 
    "name": "Quantifying Three-Dimensional Residual Stress Distributions Using Spatially-Resolved Diffraction Measurements and Finite Element Based Data Reduction", 
    "pagination": "1491-1507", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028544424"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11340-013-9771-0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11340-013-9771-0", 
      "https://app.dimensions.ai/details/publication/pub.1028544424"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_611.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11340-013-9771-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11340-013-9771-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11340-013-9771-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11340-013-9771-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11340-013-9771-0'


 

This table displays all metadata directly associated to this object as RDF triples.

151 TRIPLES      21 PREDICATES      76 URIs      63 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11340-013-9771-0 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nff65bea642ae49efaef27666672ea49b
4 schema:citation sg:pub.10.1007/978-1-4613-9570-6
5 sg:pub.10.1007/bf02830344
6 sg:pub.10.1007/s11340-006-8250-2
7 sg:pub.10.1007/s11661-008-9639-6
8 sg:pub.10.1557/proc-590-241
9 schema:datePublished 2013-07-12
10 schema:datePublishedReg 2013-07-12
11 schema:description Residual stress can play a significant role in the processing and performance of an engineered metallic component. The stress state within a polycrystalline part can vary significantly between its surface and its interior. To measure three-dimensional (3D) residual stress fields, a synchrotron x-ray diffraction-based experimental technique capable of non-destructively measuring a set of lattice strain pole figures (SPFs) at various surface and internal points within a component was developed. The resulting SPFs were used as input for a recently developed bi-scale optimization scheme McNelis et al. J Mech Phys Sol 61:428–1007 449 (2013) that combines crystal-scale measurements and continuum-scale constraints to determinethe 3D residual stress field in the component. To demonstrate this methodology, the 3D residual stress distribution was evaluated for an interference-fit sample fabricated from a low solvus high refractory (LSHR) polycrystalline Ni-base superalloy.
12 schema:genre article
13 schema:isAccessibleForFree true
14 schema:isPartOf Na94ec602692a4da4b1ec2e3bca8c66d6
15 Naeef3a1870384dc2a7cdce2f82cdf322
16 sg:journal.1039819
17 schema:keywords Ni-base superalloys
18 Spatially
19 al
20 components
21 constraints
22 data reduction
23 diffraction measurements
24 distribution
25 et al
26 experimental techniques
27 field
28 figures
29 input
30 interior
31 internal points
32 lattice strain pole figures
33 measurements
34 metallic components
35 methodology
36 part
37 performance
38 point
39 pole figures
40 polycrystalline Ni-base superalloys
41 polycrystalline part
42 processing
43 quantifying
44 reduction
45 residual stress
46 residual stress distribution
47 residual stress field
48 role
49 samples
50 set
51 significant role
52 sol
53 state
54 strain pole figures
55 stress
56 stress distribution
57 stress field
58 stress state
59 superalloy
60 surface
61 technique
62 three-dimensional residual stress distribution
63 three-dimensional residual stress field
64 schema:name Quantifying Three-Dimensional Residual Stress Distributions Using Spatially-Resolved Diffraction Measurements and Finite Element Based Data Reduction
65 schema:pagination 1491-1507
66 schema:productId Nc879a4dedade42e69c80bf488cc849d6
67 Nd82d535567bf4009ab4b0acca0ce74da
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028544424
69 https://doi.org/10.1007/s11340-013-9771-0
70 schema:sdDatePublished 2022-11-24T20:57
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N251a7e41b537403dbbeb49b1ca373ec1
73 schema:url https://doi.org/10.1007/s11340-013-9771-0
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N14e70e9b89554c5b9aba6c1c8a0148aa rdf:first sg:person.011275534223.96
78 rdf:rest N51af4852de874fc4a2d7c9f41ba56ca1
79 N251a7e41b537403dbbeb49b1ca373ec1 schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 N51af4852de874fc4a2d7c9f41ba56ca1 rdf:first sg:person.01235113703.80
82 rdf:rest rdf:nil
83 Na94ec602692a4da4b1ec2e3bca8c66d6 schema:volumeNumber 53
84 rdf:type schema:PublicationVolume
85 Naeef3a1870384dc2a7cdce2f82cdf322 schema:issueNumber 9
86 rdf:type schema:PublicationIssue
87 Nb69a38b8530c4d83a18a89eaef3dbd6f rdf:first sg:person.01166235061.10
88 rdf:rest N14e70e9b89554c5b9aba6c1c8a0148aa
89 Nc879a4dedade42e69c80bf488cc849d6 schema:name dimensions_id
90 schema:value pub.1028544424
91 rdf:type schema:PropertyValue
92 Nd82d535567bf4009ab4b0acca0ce74da schema:name doi
93 schema:value 10.1007/s11340-013-9771-0
94 rdf:type schema:PropertyValue
95 Nff65bea642ae49efaef27666672ea49b rdf:first sg:person.011316214423.51
96 rdf:rest Nb69a38b8530c4d83a18a89eaef3dbd6f
97 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
98 schema:name Engineering
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
101 schema:name Materials Engineering
102 rdf:type schema:DefinedTerm
103 sg:journal.1039819 schema:issn 0014-4851
104 1741-2765
105 schema:name Experimental Mechanics
106 schema:publisher Springer Nature
107 rdf:type schema:Periodical
108 sg:person.011275534223.96 schema:affiliation grid-institutes:grid.5386.8
109 schema:familyName Dawson
110 schema:givenName P. R.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011275534223.96
112 rdf:type schema:Person
113 sg:person.011316214423.51 schema:affiliation grid-institutes:grid.187073.a
114 schema:familyName Park
115 schema:givenName J.-S.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011316214423.51
117 rdf:type schema:Person
118 sg:person.01166235061.10 schema:affiliation grid-institutes:grid.7683.a
119 schema:familyName Lienert
120 schema:givenName U.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166235061.10
122 rdf:type schema:Person
123 sg:person.01235113703.80 schema:affiliation grid-institutes:grid.5386.8
124 schema:familyName Miller
125 schema:givenName M. P.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235113703.80
127 rdf:type schema:Person
128 sg:pub.10.1007/978-1-4613-9570-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020953271
129 https://doi.org/10.1007/978-1-4613-9570-6
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/bf02830344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008643906
132 https://doi.org/10.1007/bf02830344
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s11340-006-8250-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046092501
135 https://doi.org/10.1007/s11340-006-8250-2
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s11661-008-9639-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020850734
138 https://doi.org/10.1007/s11661-008-9639-6
139 rdf:type schema:CreativeWork
140 sg:pub.10.1557/proc-590-241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067946831
141 https://doi.org/10.1557/proc-590-241
142 rdf:type schema:CreativeWork
143 grid-institutes:grid.187073.a schema:alternateName Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
144 schema:name Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
145 rdf:type schema:Organization
146 grid-institutes:grid.5386.8 schema:alternateName Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
147 schema:name Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
148 rdf:type schema:Organization
149 grid-institutes:grid.7683.a schema:alternateName Deutsches Elektronen-Synchrotron, Hamburg, Germany
150 schema:name Deutsches Elektronen-Synchrotron, Hamburg, Germany
151 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...