Simulation-Extrapolation with Latent Heteroskedastic Error Variance View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-03-29

AUTHORS

J. R. Lockwood, Daniel F. McCaffrey

ABSTRACT

This article considers the application of the simulation-extrapolation (SIMEX) method for measurement error correction when the error variance is a function of the latent variable being measured. Heteroskedasticity of this form arises in educational and psychological applications with ability estimates from item response theory models. We conclude that there is no simple solution for applying SIMEX that generally will yield consistent estimators in this setting. However, we demonstrate that several approximate SIMEX methods can provide useful estimators, leading to recommendations for analysts dealing with this form of error in settings where SIMEX may be the most practical option. More... »

PAGES

717-736

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11336-017-9556-y

DOI

http://dx.doi.org/10.1007/s11336-017-9556-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084031038

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28397085


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Educational Testing Service, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.286674.9", 
          "name": [
            "Educational Testing Service, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lockwood", 
        "givenName": "J. R.", 
        "id": "sg:person.0604262765.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604262765.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Educational Testing Service, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.286674.9", 
          "name": [
            "Educational Testing Service, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McCaffrey", 
        "givenName": "Daniel F.", 
        "id": "sg:person.01205557536.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205557536.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/2193-8997-1-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048088003", 
          "https://doi.org/10.1186/2193-8997-1-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02294796", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042410149", 
          "https://doi.org/10.1007/bf02294796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-4310-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031462856", 
          "https://doi.org/10.1007/978-1-4757-4310-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11336-007-9050-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009272031", 
          "https://doi.org/10.1007/s11336-007-9050-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02294627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007832860", 
          "https://doi.org/10.1007/bf02294627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2691-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052835166", 
          "https://doi.org/10.1007/978-1-4757-2691-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11336-010-9195-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031898222", 
          "https://doi.org/10.1007/s11336-010-9195-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-03-29", 
    "datePublishedReg": "2017-03-29", 
    "description": "This article considers the application of the simulation-extrapolation (SIMEX) method for measurement error correction when the error variance is a function of the latent variable being measured. Heteroskedasticity of this form arises in educational and psychological applications with ability estimates from item response theory models. We conclude that there is no simple solution for applying SIMEX that generally will yield consistent estimators in this setting. However, we demonstrate that several approximate SIMEX methods can provide useful estimators, leading to recommendations for analysts dealing with this form of error in settings where SIMEX may be the most practical option.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11336-017-9556-y", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4053912", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1017907", 
        "issn": [
          "0033-3123", 
          "1860-0980"
        ], 
        "name": "Psychometrika", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "82"
      }
    ], 
    "keywords": [
      "item response theory models", 
      "psychological applications", 
      "form of error", 
      "ability estimates", 
      "error variance", 
      "latent variables", 
      "simulation-extrapolation method", 
      "consistent estimator", 
      "SIMEX method", 
      "theory model", 
      "measurement error correction", 
      "simulation extrapolation", 
      "estimator", 
      "variance", 
      "simple solution", 
      "error correction", 
      "SIMEX", 
      "setting", 
      "heteroskedasticity", 
      "useful estimator", 
      "variables", 
      "applications", 
      "solution", 
      "error", 
      "estimates", 
      "model", 
      "recommendations", 
      "article", 
      "form", 
      "correction", 
      "function", 
      "analysts", 
      "practical option", 
      "method", 
      "options"
    ], 
    "name": "Simulation-Extrapolation with Latent Heteroskedastic Error Variance", 
    "pagination": "717-736", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084031038"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11336-017-9556-y"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28397085"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11336-017-9556-y", 
      "https://app.dimensions.ai/details/publication/pub.1084031038"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_723.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11336-017-9556-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11336-017-9556-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11336-017-9556-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11336-017-9556-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11336-017-9556-y'


 

This table displays all metadata directly associated to this object as RDF triples.

133 TRIPLES      21 PREDICATES      66 URIs      51 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11336-017-9556-y schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author Nedd14ed04d7c40a796e2b2bff0254bd6
4 schema:citation sg:pub.10.1007/978-1-4757-2691-6
5 sg:pub.10.1007/978-1-4757-4310-4
6 sg:pub.10.1007/bf02294627
7 sg:pub.10.1007/bf02294796
8 sg:pub.10.1007/s11336-007-9050-z
9 sg:pub.10.1007/s11336-010-9195-z
10 sg:pub.10.1186/2193-8997-1-4
11 schema:datePublished 2017-03-29
12 schema:datePublishedReg 2017-03-29
13 schema:description This article considers the application of the simulation-extrapolation (SIMEX) method for measurement error correction when the error variance is a function of the latent variable being measured. Heteroskedasticity of this form arises in educational and psychological applications with ability estimates from item response theory models. We conclude that there is no simple solution for applying SIMEX that generally will yield consistent estimators in this setting. However, we demonstrate that several approximate SIMEX methods can provide useful estimators, leading to recommendations for analysts dealing with this form of error in settings where SIMEX may be the most practical option.
14 schema:genre article
15 schema:isAccessibleForFree false
16 schema:isPartOf Nb1896eaa7b8743d7b91769199f2347f3
17 Nf087b480c4dd455cb0192824b918cad2
18 sg:journal.1017907
19 schema:keywords SIMEX
20 SIMEX method
21 ability estimates
22 analysts
23 applications
24 article
25 consistent estimator
26 correction
27 error
28 error correction
29 error variance
30 estimates
31 estimator
32 form
33 form of error
34 function
35 heteroskedasticity
36 item response theory models
37 latent variables
38 measurement error correction
39 method
40 model
41 options
42 practical option
43 psychological applications
44 recommendations
45 setting
46 simple solution
47 simulation extrapolation
48 simulation-extrapolation method
49 solution
50 theory model
51 useful estimator
52 variables
53 variance
54 schema:name Simulation-Extrapolation with Latent Heteroskedastic Error Variance
55 schema:pagination 717-736
56 schema:productId N1e57eef0be51497391aa7f5f4c83104e
57 N6411450f6c1d4a89a2c633b43e7ecc8e
58 Nb77870ce5327415a9fab32c9d8f9da39
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084031038
60 https://doi.org/10.1007/s11336-017-9556-y
61 schema:sdDatePublished 2022-12-01T06:35
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher Nf872946c8f004e94ab71a06380dada47
64 schema:url https://doi.org/10.1007/s11336-017-9556-y
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N11c80bcf4f8444abb72eca5ce309075d rdf:first sg:person.01205557536.30
69 rdf:rest rdf:nil
70 N1e57eef0be51497391aa7f5f4c83104e schema:name doi
71 schema:value 10.1007/s11336-017-9556-y
72 rdf:type schema:PropertyValue
73 N6411450f6c1d4a89a2c633b43e7ecc8e schema:name pubmed_id
74 schema:value 28397085
75 rdf:type schema:PropertyValue
76 Nb1896eaa7b8743d7b91769199f2347f3 schema:volumeNumber 82
77 rdf:type schema:PublicationVolume
78 Nb77870ce5327415a9fab32c9d8f9da39 schema:name dimensions_id
79 schema:value pub.1084031038
80 rdf:type schema:PropertyValue
81 Nedd14ed04d7c40a796e2b2bff0254bd6 rdf:first sg:person.0604262765.34
82 rdf:rest N11c80bcf4f8444abb72eca5ce309075d
83 Nf087b480c4dd455cb0192824b918cad2 schema:issueNumber 3
84 rdf:type schema:PublicationIssue
85 Nf872946c8f004e94ab71a06380dada47 schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
88 schema:name Psychology and Cognitive Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
91 schema:name Psychology
92 rdf:type schema:DefinedTerm
93 sg:grant.4053912 http://pending.schema.org/fundedItem sg:pub.10.1007/s11336-017-9556-y
94 rdf:type schema:MonetaryGrant
95 sg:journal.1017907 schema:issn 0033-3123
96 1860-0980
97 schema:name Psychometrika
98 schema:publisher Springer Nature
99 rdf:type schema:Periodical
100 sg:person.01205557536.30 schema:affiliation grid-institutes:grid.286674.9
101 schema:familyName McCaffrey
102 schema:givenName Daniel F.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205557536.30
104 rdf:type schema:Person
105 sg:person.0604262765.34 schema:affiliation grid-institutes:grid.286674.9
106 schema:familyName Lockwood
107 schema:givenName J. R.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604262765.34
109 rdf:type schema:Person
110 sg:pub.10.1007/978-1-4757-2691-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052835166
111 https://doi.org/10.1007/978-1-4757-2691-6
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/978-1-4757-4310-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031462856
114 https://doi.org/10.1007/978-1-4757-4310-4
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/bf02294627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007832860
117 https://doi.org/10.1007/bf02294627
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/bf02294796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042410149
120 https://doi.org/10.1007/bf02294796
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s11336-007-9050-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1009272031
123 https://doi.org/10.1007/s11336-007-9050-z
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s11336-010-9195-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1031898222
126 https://doi.org/10.1007/s11336-010-9195-z
127 rdf:type schema:CreativeWork
128 sg:pub.10.1186/2193-8997-1-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048088003
129 https://doi.org/10.1186/2193-8997-1-4
130 rdf:type schema:CreativeWork
131 grid-institutes:grid.286674.9 schema:alternateName Educational Testing Service, Princeton, NJ, USA
132 schema:name Educational Testing Service, Princeton, NJ, USA
133 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...