Agile services and analysis framework for autonomous and autonomic critical infrastructure View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-08-13

AUTHORS

Joe Maurio, Paul Wood, Sebastian Zanlongo, Josh Silbermann, Tamim Sookoor, Alberto Lorenzo, Randy Sleight, James Rogers, Dan Muller, Noah Armiger, Christopher Rouff, Lanier Watkins

ABSTRACT

Many cyber physical systems have little or no cybersecurity mechanisms due to their limited computing capabilities or their history of running on isolated networks. As these systems have become interconnected and connected to corporate networks, they have become more vulnerable to cyberattacks. Providing cyber physical systems with autonomic properties will allow them to become more self-aware and react in near real time to attacks and failures. Testing these systems for their susceptibility to intelligent attacks is also needed to provide assurance of their resilience. This paper describes two approaches to providing assurances to cyber physical systems. The first approach retrofits industrial control systems with autonomic properties that will allow them to automatically detect and recover from cyberattacks and other failures through the use of microservices that reconfigure the systems dynamically during attacks or failures. The second approach uses intelligent agents in a modeling and simulation framework to test the resiliency of autonomous unmanned aerial systems. Agents are orchestrated using a range of algorithms and subjected to stressful environments to measure the efficiency and safety of their operations in a simulate multi-UAS air-traffic control problem. More... »

PAGES

1-12

References to SciGraph publications

  • 2005-03-11. Autonomic computing in INNOVATIONS IN SYSTEMS AND SOFTWARE ENGINEERING
  • 2016. Principles and Practice of Constraint Programming, 22nd International Conference, CP 2016, Toulouse, France, September 5-9, 2016, Proceedings in NONE
  • 2005. Neural Fitted Q Iteration – First Experiences with a Data Efficient Neural Reinforcement Learning Method in MACHINE LEARNING: ECML 2005
  • 2017-05-04. A Malware-Tolerant, Self-Healing Industrial Control System Framework in ICT SYSTEMS SECURITY AND PRIVACY PROTECTION
  • 2005. Autonomic Agents for Survivable Security Systems in EMBEDDED AND UBIQUITOUS COMPUTING – EUC 2005 WORKSHOPS
  • 2007-01-01. Lessons Learned from the Maroochy Water Breach in CRITICAL INFRASTRUCTURE PROTECTION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11334-021-00411-9

    DOI

    http://dx.doi.org/10.1007/s11334-021-00411-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1140407286


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Johns Hopkins University Applied Physics Laboratory, Laurel MD, USA", 
              "id": "http://www.grid.ac/institutes/grid.474430.0", 
              "name": [
                "Johns Hopkins University Applied Physics Laboratory, Laurel MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Maurio", 
            "givenName": "Joe", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Johns Hopkins University Applied Physics Laboratory, Laurel MD, USA", 
              "id": "http://www.grid.ac/institutes/grid.474430.0", 
              "name": [
                "Johns Hopkins University Applied Physics Laboratory, Laurel MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wood", 
            "givenName": "Paul", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Johns Hopkins University Applied Physics Laboratory, Laurel MD, USA", 
              "id": "http://www.grid.ac/institutes/grid.474430.0", 
              "name": [
                "Johns Hopkins University Applied Physics Laboratory, Laurel MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zanlongo", 
            "givenName": "Sebastian", 
            "id": "sg:person.016117237520.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016117237520.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Johns Hopkins University Applied Physics Laboratory, Laurel MD, USA", 
              "id": "http://www.grid.ac/institutes/grid.474430.0", 
              "name": [
                "Johns Hopkins University Applied Physics Laboratory, Laurel MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Silbermann", 
            "givenName": "Josh", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Johns Hopkins University Applied Physics Laboratory, Laurel MD, USA", 
              "id": "http://www.grid.ac/institutes/grid.474430.0", 
              "name": [
                "Johns Hopkins University Applied Physics Laboratory, Laurel MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sookoor", 
            "givenName": "Tamim", 
            "id": "sg:person.010026247473.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010026247473.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Johns Hopkins University Applied Physics Laboratory, Laurel MD, USA", 
              "id": "http://www.grid.ac/institutes/grid.474430.0", 
              "name": [
                "Johns Hopkins University Applied Physics Laboratory, Laurel MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lorenzo", 
            "givenName": "Alberto", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Johns Hopkins University Applied Physics Laboratory, Laurel MD, USA", 
              "id": "http://www.grid.ac/institutes/grid.474430.0", 
              "name": [
                "Johns Hopkins University Applied Physics Laboratory, Laurel MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sleight", 
            "givenName": "Randy", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Johns Hopkins University Applied Physics Laboratory, Laurel MD, USA", 
              "id": "http://www.grid.ac/institutes/grid.474430.0", 
              "name": [
                "Johns Hopkins University Applied Physics Laboratory, Laurel MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rogers", 
            "givenName": "James", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Johns Hopkins University Applied Physics Laboratory, Laurel MD, USA", 
              "id": "http://www.grid.ac/institutes/grid.474430.0", 
              "name": [
                "Johns Hopkins University Applied Physics Laboratory, Laurel MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Muller", 
            "givenName": "Dan", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Johns Hopkins University Applied Physics Laboratory, Laurel MD, USA", 
              "id": "http://www.grid.ac/institutes/grid.474430.0", 
              "name": [
                "Johns Hopkins University Applied Physics Laboratory, Laurel MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Armiger", 
            "givenName": "Noah", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Johns Hopkins University Applied Physics Laboratory, Laurel MD, USA", 
              "id": "http://www.grid.ac/institutes/grid.474430.0", 
              "name": [
                "Johns Hopkins University Applied Physics Laboratory, Laurel MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rouff", 
            "givenName": "Christopher", 
            "id": "sg:person.016560052530.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016560052530.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Johns Hopkins University Applied Physics Laboratory, Laurel MD, USA", 
              "id": "http://www.grid.ac/institutes/grid.474430.0", 
              "name": [
                "Johns Hopkins University Applied Physics Laboratory, Laurel MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Watkins", 
            "givenName": "Lanier", 
            "id": "sg:person.010445532352.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010445532352.48"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/11596042_125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047793020", 
              "https://doi.org/10.1007/11596042_125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11334-005-0001-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027715336", 
              "https://doi.org/10.1007/s11334-005-0001-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-75462-8_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040189262", 
              "https://doi.org/10.1007/978-0-387-75462-8_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11564096_32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052945304", 
              "https://doi.org/10.1007/11564096_32"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-44953-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025568103", 
              "https://doi.org/10.1007/978-3-319-44953-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-58469-0_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086842310", 
              "https://doi.org/10.1007/978-3-319-58469-0_4"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-08-13", 
        "datePublishedReg": "2021-08-13", 
        "description": "Many cyber physical systems have little or no cybersecurity mechanisms due to their limited computing capabilities or their history of running on isolated networks. As these systems have become interconnected and connected to corporate networks, they have become more vulnerable to cyberattacks. Providing cyber physical systems with autonomic properties will allow them to become more self-aware and react in near real time to attacks and failures. Testing these systems for their susceptibility to intelligent attacks is also needed to provide assurance of their resilience. This paper describes two approaches to providing assurances to cyber physical systems. The first approach retrofits industrial control systems with autonomic properties that will allow them to automatically detect and recover from cyberattacks and other failures through the use of microservices that reconfigure the systems dynamically during attacks or failures. The second approach uses intelligent agents in a modeling and simulation framework to test the resiliency of autonomous unmanned aerial systems. Agents are orchestrated using a range of algorithms and subjected to stressful environments to measure the efficiency and safety of their operations in a simulate multi-UAS air-traffic control problem.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11334-021-00411-9", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1044675", 
            "issn": [
              "1614-5046", 
              "1614-5054"
            ], 
            "name": "Innovations in Systems and Software Engineering", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }
        ], 
        "keywords": [
          "cyber-physical systems", 
          "autonomic properties", 
          "autonomous unmanned aerial systems", 
          "use of microservices", 
          "limited computing capabilities", 
          "physical systems", 
          "air traffic control problem", 
          "industrial control systems", 
          "range of algorithms", 
          "unmanned aerial systems", 
          "intelligent agents", 
          "agile services", 
          "cybersecurity mechanisms", 
          "computing capabilities", 
          "intelligent attacks", 
          "corporate networks", 
          "critical infrastructure", 
          "simulation framework", 
          "aerial systems", 
          "real time", 
          "isolated network", 
          "cyberattacks", 
          "analysis framework", 
          "control system", 
          "attacks", 
          "network", 
          "first approach", 
          "second approach", 
          "control problem", 
          "microservices", 
          "framework", 
          "assurance", 
          "system", 
          "algorithm", 
          "infrastructure", 
          "services", 
          "capability", 
          "resiliency", 
          "environment", 
          "modeling", 
          "operation", 
          "efficiency", 
          "resilience", 
          "time", 
          "use", 
          "agents", 
          "properties", 
          "safety", 
          "failure", 
          "approach", 
          "mechanism", 
          "range", 
          "problem", 
          "stressful environments", 
          "history", 
          "susceptibility", 
          "paper", 
          "simulate multi-UAS air-traffic control problem", 
          "multi-UAS air-traffic control problem", 
          "autonomic critical infrastructure"
        ], 
        "name": "Agile services and analysis framework for autonomous and autonomic critical infrastructure", 
        "pagination": "1-12", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1140407286"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11334-021-00411-9"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11334-021-00411-9", 
          "https://app.dimensions.ai/details/publication/pub.1140407286"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T19:03", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_902.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11334-021-00411-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11334-021-00411-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11334-021-00411-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11334-021-00411-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11334-021-00411-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    209 TRIPLES      22 PREDICATES      90 URIs      75 LITERALS      4 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11334-021-00411-9 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 anzsrc-for:0806
    4 schema:author Nedd21dba6cc947f79f5be46acceba4a1
    5 schema:citation sg:pub.10.1007/11564096_32
    6 sg:pub.10.1007/11596042_125
    7 sg:pub.10.1007/978-0-387-75462-8_6
    8 sg:pub.10.1007/978-3-319-44953-1
    9 sg:pub.10.1007/978-3-319-58469-0_4
    10 sg:pub.10.1007/s11334-005-0001-5
    11 schema:datePublished 2021-08-13
    12 schema:datePublishedReg 2021-08-13
    13 schema:description Many cyber physical systems have little or no cybersecurity mechanisms due to their limited computing capabilities or their history of running on isolated networks. As these systems have become interconnected and connected to corporate networks, they have become more vulnerable to cyberattacks. Providing cyber physical systems with autonomic properties will allow them to become more self-aware and react in near real time to attacks and failures. Testing these systems for their susceptibility to intelligent attacks is also needed to provide assurance of their resilience. This paper describes two approaches to providing assurances to cyber physical systems. The first approach retrofits industrial control systems with autonomic properties that will allow them to automatically detect and recover from cyberattacks and other failures through the use of microservices that reconfigure the systems dynamically during attacks or failures. The second approach uses intelligent agents in a modeling and simulation framework to test the resiliency of autonomous unmanned aerial systems. Agents are orchestrated using a range of algorithms and subjected to stressful environments to measure the efficiency and safety of their operations in a simulate multi-UAS air-traffic control problem.
    14 schema:genre article
    15 schema:inLanguage en
    16 schema:isAccessibleForFree false
    17 schema:isPartOf sg:journal.1044675
    18 schema:keywords aerial systems
    19 agents
    20 agile services
    21 air traffic control problem
    22 algorithm
    23 analysis framework
    24 approach
    25 assurance
    26 attacks
    27 autonomic critical infrastructure
    28 autonomic properties
    29 autonomous unmanned aerial systems
    30 capability
    31 computing capabilities
    32 control problem
    33 control system
    34 corporate networks
    35 critical infrastructure
    36 cyber-physical systems
    37 cyberattacks
    38 cybersecurity mechanisms
    39 efficiency
    40 environment
    41 failure
    42 first approach
    43 framework
    44 history
    45 industrial control systems
    46 infrastructure
    47 intelligent agents
    48 intelligent attacks
    49 isolated network
    50 limited computing capabilities
    51 mechanism
    52 microservices
    53 modeling
    54 multi-UAS air-traffic control problem
    55 network
    56 operation
    57 paper
    58 physical systems
    59 problem
    60 properties
    61 range
    62 range of algorithms
    63 real time
    64 resilience
    65 resiliency
    66 safety
    67 second approach
    68 services
    69 simulate multi-UAS air-traffic control problem
    70 simulation framework
    71 stressful environments
    72 susceptibility
    73 system
    74 time
    75 unmanned aerial systems
    76 use
    77 use of microservices
    78 schema:name Agile services and analysis framework for autonomous and autonomic critical infrastructure
    79 schema:pagination 1-12
    80 schema:productId Na00561152f4f41b99592ba36b29879be
    81 Ndc8173ff957d48778ce9c0133738f975
    82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140407286
    83 https://doi.org/10.1007/s11334-021-00411-9
    84 schema:sdDatePublished 2022-01-01T19:03
    85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    86 schema:sdPublisher N90639ec2497e46e6b65d17a69f08e85f
    87 schema:url https://doi.org/10.1007/s11334-021-00411-9
    88 sgo:license sg:explorer/license/
    89 sgo:sdDataset articles
    90 rdf:type schema:ScholarlyArticle
    91 N1a228a823a154c938a494c6accb3a90b schema:affiliation grid-institutes:grid.474430.0
    92 schema:familyName Muller
    93 schema:givenName Dan
    94 rdf:type schema:Person
    95 N28229b195b6c412fa32a4ff9fc192d78 schema:affiliation grid-institutes:grid.474430.0
    96 schema:familyName Silbermann
    97 schema:givenName Josh
    98 rdf:type schema:Person
    99 N30c0196829aa477ab892994da3fed6c2 rdf:first N1a228a823a154c938a494c6accb3a90b
    100 rdf:rest N77e64e03391b4da9aaf35da6e12969da
    101 N33ba0a7181d243b18ef46bbb59e989f0 rdf:first N28229b195b6c412fa32a4ff9fc192d78
    102 rdf:rest Nf6d7fe9a6def431b9faf138f3bcb5d6a
    103 N3d885af0025e45ba8354388a9a109d39 schema:affiliation grid-institutes:grid.474430.0
    104 schema:familyName Wood
    105 schema:givenName Paul
    106 rdf:type schema:Person
    107 N4550d7c8c0f04f11b3e8ae8dd75e6b30 schema:affiliation grid-institutes:grid.474430.0
    108 schema:familyName Rogers
    109 schema:givenName James
    110 rdf:type schema:Person
    111 N49c90e5a65704e078aa4d2e72a4fd6db rdf:first N3d885af0025e45ba8354388a9a109d39
    112 rdf:rest Na46831e18bb242c1873d310d45e970ae
    113 N50ba3e24aa514d31ae36313f7c5b73fa rdf:first sg:person.016560052530.14
    114 rdf:rest Nda493b3173c14e5d8c370a6ee3c6a636
    115 N59b052f3978943c5b273b5075177a63e schema:affiliation grid-institutes:grid.474430.0
    116 schema:familyName Armiger
    117 schema:givenName Noah
    118 rdf:type schema:Person
    119 N6d807c5dd6474ad4b144b4d3bc633cb1 schema:affiliation grid-institutes:grid.474430.0
    120 schema:familyName Lorenzo
    121 schema:givenName Alberto
    122 rdf:type schema:Person
    123 N71e63226c821430e8f19f2a32bdea277 schema:affiliation grid-institutes:grid.474430.0
    124 schema:familyName Maurio
    125 schema:givenName Joe
    126 rdf:type schema:Person
    127 N77e64e03391b4da9aaf35da6e12969da rdf:first N59b052f3978943c5b273b5075177a63e
    128 rdf:rest N50ba3e24aa514d31ae36313f7c5b73fa
    129 N90639ec2497e46e6b65d17a69f08e85f schema:name Springer Nature - SN SciGraph project
    130 rdf:type schema:Organization
    131 Na00561152f4f41b99592ba36b29879be schema:name dimensions_id
    132 schema:value pub.1140407286
    133 rdf:type schema:PropertyValue
    134 Na46831e18bb242c1873d310d45e970ae rdf:first sg:person.016117237520.52
    135 rdf:rest N33ba0a7181d243b18ef46bbb59e989f0
    136 Nc162325a761d4c37aa53b0a0eb694e73 rdf:first N4550d7c8c0f04f11b3e8ae8dd75e6b30
    137 rdf:rest N30c0196829aa477ab892994da3fed6c2
    138 Nc4e468dcbff2430d8d673efefe533f5c rdf:first N6d807c5dd6474ad4b144b4d3bc633cb1
    139 rdf:rest Nee906e9de7c940d38007b5c31a27cff7
    140 Nda493b3173c14e5d8c370a6ee3c6a636 rdf:first sg:person.010445532352.48
    141 rdf:rest rdf:nil
    142 Ndc8173ff957d48778ce9c0133738f975 schema:name doi
    143 schema:value 10.1007/s11334-021-00411-9
    144 rdf:type schema:PropertyValue
    145 Nedd21dba6cc947f79f5be46acceba4a1 rdf:first N71e63226c821430e8f19f2a32bdea277
    146 rdf:rest N49c90e5a65704e078aa4d2e72a4fd6db
    147 Nee906e9de7c940d38007b5c31a27cff7 rdf:first Nf2f4b1deae49418da7a545e161a76c4f
    148 rdf:rest Nc162325a761d4c37aa53b0a0eb694e73
    149 Nf2f4b1deae49418da7a545e161a76c4f schema:affiliation grid-institutes:grid.474430.0
    150 schema:familyName Sleight
    151 schema:givenName Randy
    152 rdf:type schema:Person
    153 Nf6d7fe9a6def431b9faf138f3bcb5d6a rdf:first sg:person.010026247473.05
    154 rdf:rest Nc4e468dcbff2430d8d673efefe533f5c
    155 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    156 schema:name Information and Computing Sciences
    157 rdf:type schema:DefinedTerm
    158 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    159 schema:name Artificial Intelligence and Image Processing
    160 rdf:type schema:DefinedTerm
    161 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    162 schema:name Information Systems
    163 rdf:type schema:DefinedTerm
    164 sg:journal.1044675 schema:issn 1614-5046
    165 1614-5054
    166 schema:name Innovations in Systems and Software Engineering
    167 schema:publisher Springer Nature
    168 rdf:type schema:Periodical
    169 sg:person.010026247473.05 schema:affiliation grid-institutes:grid.474430.0
    170 schema:familyName Sookoor
    171 schema:givenName Tamim
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010026247473.05
    173 rdf:type schema:Person
    174 sg:person.010445532352.48 schema:affiliation grid-institutes:grid.474430.0
    175 schema:familyName Watkins
    176 schema:givenName Lanier
    177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010445532352.48
    178 rdf:type schema:Person
    179 sg:person.016117237520.52 schema:affiliation grid-institutes:grid.474430.0
    180 schema:familyName Zanlongo
    181 schema:givenName Sebastian
    182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016117237520.52
    183 rdf:type schema:Person
    184 sg:person.016560052530.14 schema:affiliation grid-institutes:grid.474430.0
    185 schema:familyName Rouff
    186 schema:givenName Christopher
    187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016560052530.14
    188 rdf:type schema:Person
    189 sg:pub.10.1007/11564096_32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052945304
    190 https://doi.org/10.1007/11564096_32
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/11596042_125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047793020
    193 https://doi.org/10.1007/11596042_125
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/978-0-387-75462-8_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040189262
    196 https://doi.org/10.1007/978-0-387-75462-8_6
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/978-3-319-44953-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025568103
    199 https://doi.org/10.1007/978-3-319-44953-1
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/978-3-319-58469-0_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086842310
    202 https://doi.org/10.1007/978-3-319-58469-0_4
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/s11334-005-0001-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027715336
    205 https://doi.org/10.1007/s11334-005-0001-5
    206 rdf:type schema:CreativeWork
    207 grid-institutes:grid.474430.0 schema:alternateName Johns Hopkins University Applied Physics Laboratory, Laurel MD, USA
    208 schema:name Johns Hopkins University Applied Physics Laboratory, Laurel MD, USA
    209 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...