Bootstrap aggregation ensemble learning-based reliable approach for software defect prediction by using characterized code feature View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-05-19

AUTHORS

P. Suresh Kumar, H. S. Behera, Janmenjoy Nayak, Bighnaraj Naik

ABSTRACT

To ensure software quality, software defect prediction plays a prominent role for the software developers and practitioners. Software defect prediction can assist us with distinguishing software defect modules and enhance the software quality. In present days, many supervised machine learning algorithms have proved their efficacy to identify defective modules. However, those are limited to prove their major significance due to the limitations such as the adaptation of parameters with the environment and complexity. So, it is important to develop a key methodology to improve the efficiency of the prediction module. In this paper, an ensemble learning technique called Bootstrap aggregating has been proposed for software defect prediction object-oriented modules. The proposed method's accuracy, recall, precision, F-measure, and AUC-ROC efficiency were compared to those of many qualified machine learning algorithms. Simulation results and performance comparison are evident that the proposed method outperformed well compared to other approaches. More... »

PAGES

355-379

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11334-021-00399-2

DOI

http://dx.doi.org/10.1007/s11334-021-00399-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1138180830


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0803", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computer Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Information Technology, Veer Surendra Sai University of Technology, 768018, Burla, India", 
          "id": "http://www.grid.ac/institutes/grid.449922.0", 
          "name": [
            "Department of Information Technology, Veer Surendra Sai University of Technology, 768018, Burla, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suresh Kumar", 
        "givenName": "P.", 
        "id": "sg:person.016423571165.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016423571165.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Information Technology, Veer Surendra Sai University of Technology, 768018, Burla, India", 
          "id": "http://www.grid.ac/institutes/grid.449922.0", 
          "name": [
            "Department of Information Technology, Veer Surendra Sai University of Technology, 768018, Burla, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Behera", 
        "givenName": "H. S.", 
        "id": "sg:person.011541475053.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011541475053.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of CSE, Aditya Institute of Technology and Management (AITAM), 532201, Tekkali, AP, India", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of CSE, Aditya Institute of Technology and Management (AITAM), 532201, Tekkali, AP, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nayak", 
        "givenName": "Janmenjoy", 
        "id": "sg:person.011456313113.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011456313113.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Application, Veer Surendra Sai University of Technology, 768018, Burla, India", 
          "id": "http://www.grid.ac/institutes/grid.449922.0", 
          "name": [
            "Department of Computer Application, Veer Surendra Sai University of Technology, 768018, Burla, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Naik", 
        "givenName": "Bighnaraj", 
        "id": "sg:person.010111376773.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010111376773.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10586-018-1696-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100470435", 
          "https://doi.org/10.1007/s10586-018-1696-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10586-018-1730-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100857480", 
          "https://doi.org/10.1007/s10586-018-1730-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10664-012-9218-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028826281", 
          "https://doi.org/10.1007/s10664-012-9218-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-11218-3_35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042784154", 
          "https://doi.org/10.1007/978-3-319-11218-3_35"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00058655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002929950", 
          "https://doi.org/10.1007/bf00058655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-981-10-4603-2_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092346448", 
          "https://doi.org/10.1007/978-981-10-4603-2_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-25964-2_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023069418", 
          "https://doi.org/10.1007/978-3-319-25964-2_3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-05-19", 
    "datePublishedReg": "2021-05-19", 
    "description": "To ensure software quality, software defect prediction plays a prominent role for the software developers and practitioners. Software defect prediction can assist us with distinguishing software defect modules and enhance the software quality. In present days, many supervised machine learning algorithms have proved their efficacy to identify defective modules. However, those are limited to prove their major significance due to the limitations such as the adaptation of parameters with the environment and complexity. So, it is important to develop a key methodology to improve the efficiency of the prediction module. In this paper, an ensemble learning technique called\u00a0Bootstrap\u00a0aggregating has been proposed for software defect prediction object-oriented modules. The proposed method's accuracy, recall, precision, F-measure, and AUC-ROC efficiency were compared to those of many qualified machine learning algorithms. Simulation results and performance comparison are evident that the proposed method outperformed well compared to other approaches.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11334-021-00399-2", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1044675", 
        "issn": [
          "1614-5046", 
          "1614-5054"
        ], 
        "name": "Innovations in Systems and Software Engineering", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "keywords": [
      "software defect prediction", 
      "defect prediction", 
      "software quality", 
      "object-oriented modules", 
      "ensemble learning techniques", 
      "software developers", 
      "adaptation of parameters", 
      "learning techniques", 
      "defect modules", 
      "code features", 
      "supervised machine", 
      "defective modules", 
      "prediction module", 
      "performance comparison", 
      "simulation results", 
      "machine", 
      "algorithm", 
      "module", 
      "key methodology", 
      "accuracy", 
      "developers", 
      "complexity", 
      "method accuracy", 
      "reliable approach", 
      "prediction", 
      "efficiency", 
      "quality", 
      "environment", 
      "recall", 
      "methodology", 
      "precision", 
      "features", 
      "technique", 
      "limitations", 
      "method", 
      "adaptation", 
      "practitioners", 
      "bootstrap", 
      "results", 
      "present day", 
      "parameters", 
      "major significance", 
      "measures", 
      "comparison", 
      "prominent role", 
      "significance", 
      "role", 
      "efficacy", 
      "days", 
      "approach", 
      "paper", 
      "qualified machine", 
      "software defect modules", 
      "software defect prediction object-oriented modules", 
      "defect prediction object-oriented modules", 
      "prediction object-oriented modules", 
      "AUC-ROC efficiency", 
      "aggregation ensemble learning-based reliable approach", 
      "ensemble learning-based reliable approach", 
      "learning-based reliable approach"
    ], 
    "name": "Bootstrap aggregation ensemble learning-based reliable approach for software defect prediction by using characterized code feature", 
    "pagination": "355-379", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1138180830"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11334-021-00399-2"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11334-021-00399-2", 
      "https://app.dimensions.ai/details/publication/pub.1138180830"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_883.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11334-021-00399-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11334-021-00399-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11334-021-00399-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11334-021-00399-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11334-021-00399-2'


 

This table displays all metadata directly associated to this object as RDF triples.

176 TRIPLES      22 PREDICATES      93 URIs      77 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11334-021-00399-2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:0803
4 schema:author Nb0fdb34e61a84707a09259d92d184a3a
5 schema:citation sg:pub.10.1007/978-3-319-11218-3_35
6 sg:pub.10.1007/978-3-319-25964-2_3
7 sg:pub.10.1007/978-981-10-4603-2_6
8 sg:pub.10.1007/bf00058655
9 sg:pub.10.1007/s10586-018-1696-z
10 sg:pub.10.1007/s10586-018-1730-1
11 sg:pub.10.1007/s10664-012-9218-8
12 schema:datePublished 2021-05-19
13 schema:datePublishedReg 2021-05-19
14 schema:description To ensure software quality, software defect prediction plays a prominent role for the software developers and practitioners. Software defect prediction can assist us with distinguishing software defect modules and enhance the software quality. In present days, many supervised machine learning algorithms have proved their efficacy to identify defective modules. However, those are limited to prove their major significance due to the limitations such as the adaptation of parameters with the environment and complexity. So, it is important to develop a key methodology to improve the efficiency of the prediction module. In this paper, an ensemble learning technique called Bootstrap aggregating has been proposed for software defect prediction object-oriented modules. The proposed method's accuracy, recall, precision, F-measure, and AUC-ROC efficiency were compared to those of many qualified machine learning algorithms. Simulation results and performance comparison are evident that the proposed method outperformed well compared to other approaches.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N099ca15e17154628b75e795da75dd4f4
19 Ndbdc6f92feef46f2b7b9dddaa80d350e
20 sg:journal.1044675
21 schema:keywords AUC-ROC efficiency
22 accuracy
23 adaptation
24 adaptation of parameters
25 aggregation ensemble learning-based reliable approach
26 algorithm
27 approach
28 bootstrap
29 code features
30 comparison
31 complexity
32 days
33 defect modules
34 defect prediction
35 defect prediction object-oriented modules
36 defective modules
37 developers
38 efficacy
39 efficiency
40 ensemble learning techniques
41 ensemble learning-based reliable approach
42 environment
43 features
44 key methodology
45 learning techniques
46 learning-based reliable approach
47 limitations
48 machine
49 major significance
50 measures
51 method
52 method accuracy
53 methodology
54 module
55 object-oriented modules
56 paper
57 parameters
58 performance comparison
59 practitioners
60 precision
61 prediction
62 prediction module
63 prediction object-oriented modules
64 present day
65 prominent role
66 qualified machine
67 quality
68 recall
69 reliable approach
70 results
71 role
72 significance
73 simulation results
74 software defect modules
75 software defect prediction
76 software defect prediction object-oriented modules
77 software developers
78 software quality
79 supervised machine
80 technique
81 schema:name Bootstrap aggregation ensemble learning-based reliable approach for software defect prediction by using characterized code feature
82 schema:pagination 355-379
83 schema:productId N0f841ee99ba6488688efaad38a365862
84 N15fd3ba6ae2b48f2a9bdf4fefdf5d5c5
85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138180830
86 https://doi.org/10.1007/s11334-021-00399-2
87 schema:sdDatePublished 2022-01-01T18:57
88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
89 schema:sdPublisher Nd9d5077a9b0b45dabd54ec81f5b30135
90 schema:url https://doi.org/10.1007/s11334-021-00399-2
91 sgo:license sg:explorer/license/
92 sgo:sdDataset articles
93 rdf:type schema:ScholarlyArticle
94 N099ca15e17154628b75e795da75dd4f4 schema:issueNumber 4
95 rdf:type schema:PublicationIssue
96 N0f841ee99ba6488688efaad38a365862 schema:name dimensions_id
97 schema:value pub.1138180830
98 rdf:type schema:PropertyValue
99 N1129a70dfc9c4e898f2fdd16e745a32c rdf:first sg:person.010111376773.38
100 rdf:rest rdf:nil
101 N15fd3ba6ae2b48f2a9bdf4fefdf5d5c5 schema:name doi
102 schema:value 10.1007/s11334-021-00399-2
103 rdf:type schema:PropertyValue
104 Na00cb0401d6a48169ea4fa6d418fed5d rdf:first sg:person.011456313113.52
105 rdf:rest N1129a70dfc9c4e898f2fdd16e745a32c
106 Nb0fdb34e61a84707a09259d92d184a3a rdf:first sg:person.016423571165.30
107 rdf:rest Ncc163ab15c4d4aa0a468b591f6ac8346
108 Ncc163ab15c4d4aa0a468b591f6ac8346 rdf:first sg:person.011541475053.29
109 rdf:rest Na00cb0401d6a48169ea4fa6d418fed5d
110 Nd9d5077a9b0b45dabd54ec81f5b30135 schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 Ndbdc6f92feef46f2b7b9dddaa80d350e schema:volumeNumber 17
113 rdf:type schema:PublicationVolume
114 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
115 schema:name Information and Computing Sciences
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
118 schema:name Artificial Intelligence and Image Processing
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0803 schema:inDefinedTermSet anzsrc-for:
121 schema:name Computer Software
122 rdf:type schema:DefinedTerm
123 sg:journal.1044675 schema:issn 1614-5046
124 1614-5054
125 schema:name Innovations in Systems and Software Engineering
126 schema:publisher Springer Nature
127 rdf:type schema:Periodical
128 sg:person.010111376773.38 schema:affiliation grid-institutes:grid.449922.0
129 schema:familyName Naik
130 schema:givenName Bighnaraj
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010111376773.38
132 rdf:type schema:Person
133 sg:person.011456313113.52 schema:affiliation grid-institutes:None
134 schema:familyName Nayak
135 schema:givenName Janmenjoy
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011456313113.52
137 rdf:type schema:Person
138 sg:person.011541475053.29 schema:affiliation grid-institutes:grid.449922.0
139 schema:familyName Behera
140 schema:givenName H. S.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011541475053.29
142 rdf:type schema:Person
143 sg:person.016423571165.30 schema:affiliation grid-institutes:grid.449922.0
144 schema:familyName Suresh Kumar
145 schema:givenName P.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016423571165.30
147 rdf:type schema:Person
148 sg:pub.10.1007/978-3-319-11218-3_35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042784154
149 https://doi.org/10.1007/978-3-319-11218-3_35
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/978-3-319-25964-2_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023069418
152 https://doi.org/10.1007/978-3-319-25964-2_3
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/978-981-10-4603-2_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092346448
155 https://doi.org/10.1007/978-981-10-4603-2_6
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/bf00058655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002929950
158 https://doi.org/10.1007/bf00058655
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/s10586-018-1696-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1100470435
161 https://doi.org/10.1007/s10586-018-1696-z
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/s10586-018-1730-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100857480
164 https://doi.org/10.1007/s10586-018-1730-1
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/s10664-012-9218-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028826281
167 https://doi.org/10.1007/s10664-012-9218-8
168 rdf:type schema:CreativeWork
169 grid-institutes:None schema:alternateName Department of CSE, Aditya Institute of Technology and Management (AITAM), 532201, Tekkali, AP, India
170 schema:name Department of CSE, Aditya Institute of Technology and Management (AITAM), 532201, Tekkali, AP, India
171 rdf:type schema:Organization
172 grid-institutes:grid.449922.0 schema:alternateName Department of Computer Application, Veer Surendra Sai University of Technology, 768018, Burla, India
173 Department of Information Technology, Veer Surendra Sai University of Technology, 768018, Burla, India
174 schema:name Department of Computer Application, Veer Surendra Sai University of Technology, 768018, Burla, India
175 Department of Information Technology, Veer Surendra Sai University of Technology, 768018, Burla, India
176 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...