Noninvasive PET Imaging of a Ga-68-Radiolabeled RRL-Derived Peptide in Hepatocarcinoma Murine Models View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Yan Huo, Lei Kang, Xiaoxi Pang, Haoyuan Shen, Ping Yan, Chunli Zhang, Xuhe Liao, Xueqi Chen, Rongfu Wang

ABSTRACT

PURPOSE: Tc-99m- and I-131-labeled arginine-arginine-leucine (RRL) peptides have shown the feasibility of tumor imaging in our previous studies. However, there have been no reports using RRL peptide for positron emission tomography (PET) imaging. In this study, RRL was radiolabeled with Ga-68 under optimized reaction conditions to develop a better specific and effective tumor imaging agent. PROCEDURES: RRL was synthesized and conjugated to a bifunctional chelating agent (DOTA-NHS), then radiolabeled with Ga-68. Labeling yield was optimized by varying pH, temperature, and reaction time and the stability was evaluated in human fresh serum. Cellular uptakes of [68Ga]DOTA-RRL and FITC-conjugated RRL in HepG2 cells were evaluated using a gamma counter, confocal microscopy, and flow cytometry. PET images and biodistribution were performed in HepG2 tumor-bearing mice after injection of [68Ga]DOTA-RRL or [68Ga]GaCl3 at different time points. Further, blocking study was investigated using cold RRL. RESULTS: The labeling yield of [68Ga]DOTA-RRL was 80.6 ± 3.9 % with a pH of 3.5-4.5 at 100 °C for 15 min. The cellular uptake of [68Ga]DOTA-RRL in HepG2 cells was significantly higher than that of [68Ga]GaCl3 (P < 0.05). Moreover, the high fluorescent affinity of FITC-conjugated RRL in HepG2 cells was shown using confocal microscopy and flow cytometry. After injection of [68Ga]DOTA-RRL in HepG2 tumor-bearing mice, tumor regions exhibited high radioactive accumulation over 120 min and the highest uptake at 30 min. After blocked with cold RRL, HepG2 tumors could not be visualized. [68Ga]GaCl3 was unable to show tumor images at any time point. The biodistribution results confirmed the PET imaging and blocking results. CONCLUSIONS: Our study successfully prepared [68Ga]DOTA-RRL with a high labeling yield under the optimized reaction conditions and demonstrated its potential role as a PET imaging agent for tumor-targeted diagnosis. More... »

PAGES

1-11

References to SciGraph publications

  • 2016-12. Preclinical evaluation of [68Ga]NOTA-pentixafor for PET imaging of CXCR4 expression in vivo — a comparison to [68Ga]pentixafor in EJNMMI RESEARCH
  • 2002-09. Modulating Targeted Adhesion of an Ultrasound Contrast Agent to Dysfunctional Endothelium in ANNALS OF BIOMEDICAL ENGINEERING
  • 2007-07. Are radiogallium-labelled DOTA-conjugated somatostatin analogues superior to those labelled with other radiometals? in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2010-07. A HER2-binding Affibody molecule labelled with 68Ga for PET imaging: direct in vivo comparison with the 111In-labelled analogue in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2015-11. Synthesis and evaluation of Tc-99m-labeled RRL-containing peptide as a non-invasive tumor imaging agent in a mouse fibrosarcoma model in ANNALS OF NUCLEAR MEDICINE
  • 2012-12. Comparative gallium-68 labeling of TRAP-, NOTA-, and DOTA-peptides: practical consequences for the future of gallium-68-PET in EJNMMI RESEARCH
  • 2000-12. A Novel Approach for the Identification of Unique Tumor Vasculature Binding Peptides Using an E. coli Peptide Display Library in ANNALS OF SURGICAL ONCOLOGY
  • 2012-03. Use of radioiodinated peptide Arg-Arg-Leu targeted to neovascularization as well as tumor cells in molecular tumor imaging in CHINESE JOURNAL OF CANCER RESEARCH
  • 2010-01. Study on biodistribution and imaging of radioiodinated arginine-arginine-leucine peptide in nude mice bearing human prostate carcinoma in ANNALS OF NUCLEAR MEDICINE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11307-018-1234-7

    DOI

    http://dx.doi.org/10.1007/s11307-018-1234-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1104893594

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29916116


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Peking University First Hospital", 
              "id": "https://www.grid.ac/institutes/grid.411472.5", 
              "name": [
                "Department of Nuclear Medicine, Peking University First Hospital, No. 8 St. Xishiku, 100034, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huo", 
            "givenName": "Yan", 
            "id": "sg:person.01141371137.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141371137.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Peking University First Hospital", 
              "id": "https://www.grid.ac/institutes/grid.411472.5", 
              "name": [
                "Department of Nuclear Medicine, Peking University First Hospital, No. 8 St. Xishiku, 100034, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kang", 
            "givenName": "Lei", 
            "id": "sg:person.01370703365.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370703365.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Peking University First Hospital", 
              "id": "https://www.grid.ac/institutes/grid.411472.5", 
              "name": [
                "Department of Nuclear Medicine, Peking University First Hospital, No. 8 St. Xishiku, 100034, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pang", 
            "givenName": "Xiaoxi", 
            "id": "sg:person.011643474312.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011643474312.72"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Peking University First Hospital", 
              "id": "https://www.grid.ac/institutes/grid.411472.5", 
              "name": [
                "Department of Nuclear Medicine, Peking University First Hospital, No. 8 St. Xishiku, 100034, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shen", 
            "givenName": "Haoyuan", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Peking University First Hospital", 
              "id": "https://www.grid.ac/institutes/grid.411472.5", 
              "name": [
                "Department of Nuclear Medicine, Peking University First Hospital, No. 8 St. Xishiku, 100034, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yan", 
            "givenName": "Ping", 
            "id": "sg:person.01053425334.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053425334.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Peking University First Hospital", 
              "id": "https://www.grid.ac/institutes/grid.411472.5", 
              "name": [
                "Department of Nuclear Medicine, Peking University First Hospital, No. 8 St. Xishiku, 100034, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Chunli", 
            "id": "sg:person.01052236127.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052236127.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Peking University First Hospital", 
              "id": "https://www.grid.ac/institutes/grid.411472.5", 
              "name": [
                "Department of Nuclear Medicine, Peking University First Hospital, No. 8 St. Xishiku, 100034, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liao", 
            "givenName": "Xuhe", 
            "id": "sg:person.01023704620.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023704620.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Peking University First Hospital", 
              "id": "https://www.grid.ac/institutes/grid.411472.5", 
              "name": [
                "Department of Nuclear Medicine, Peking University First Hospital, No. 8 St. Xishiku, 100034, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Xueqi", 
            "id": "sg:person.01234577727.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234577727.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Peking University First Hospital", 
              "id": "https://www.grid.ac/institutes/grid.411472.5", 
              "name": [
                "Department of Nuclear Medicine, Peking University First Hospital, No. 8 St. Xishiku, 100034, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Rongfu", 
            "id": "sg:person.0712223160.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712223160.69"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10434-000-0743-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006319679", 
              "https://doi.org/10.1007/s10434-000-0743-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.addr.2016.06.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006643096"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apradiso.2015.10.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006794271"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nucmedbio.2013.12.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007960804"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1114/1.1513565", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011110117", 
              "https://doi.org/10.1114/1.1513565"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13550-016-0227-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012606492", 
              "https://doi.org/10.1186/s13550-016-0227-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13550-016-0227-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012606492", 
              "https://doi.org/10.1186/s13550-016-0227-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11670-012-0052-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020394383", 
              "https://doi.org/10.1007/s11670-012-0052-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.109.069906", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024746823"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-009-1367-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025550546", 
              "https://doi.org/10.1007/s00259-009-1367-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-009-1367-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025550546", 
              "https://doi.org/10.1007/s00259-009-1367-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c3cs60304k", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033179543"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12149-015-1002-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036862146", 
              "https://doi.org/10.1007/s12149-015-1002-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-006-0317-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039271748", 
              "https://doi.org/10.1007/s00259-006-0317-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-006-0317-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039271748", 
              "https://doi.org/10.1007/s00259-006-0317-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12149-009-0328-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044512619", 
              "https://doi.org/10.1007/s12149-009-0328-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12149-009-0328-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044512619", 
              "https://doi.org/10.1007/s12149-009-0328-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/2191-219x-2-28", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045299387", 
              "https://doi.org/10.1186/2191-219x-2-28"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0061043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052896439"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nucmedbio.2007.03.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053085292"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.jpclett.6b00452", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055114329"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/bc200197h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055154634"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/bc200197h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055154634"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2174/138161212799315812", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069168014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3892/ijmm.19.2.285", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071506540"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3892/mmr.2013.1338", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071520910"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077003907", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078828739", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1079080666", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082900297", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2174/1871520617666170419143459", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085236511"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-04", 
        "datePublishedReg": "2019-04-01", 
        "description": "PURPOSE: Tc-99m- and I-131-labeled arginine-arginine-leucine (RRL) peptides have shown the feasibility of tumor imaging in our previous studies. However, there have been no reports using RRL peptide for positron emission tomography (PET) imaging. In this study, RRL was radiolabeled with Ga-68 under optimized reaction conditions to develop a better specific and effective tumor imaging agent.\nPROCEDURES: RRL was synthesized and conjugated to a bifunctional chelating agent (DOTA-NHS), then radiolabeled with Ga-68. Labeling yield was optimized by varying pH, temperature, and reaction time and the stability was evaluated in human fresh serum. Cellular uptakes of [68Ga]DOTA-RRL and FITC-conjugated RRL in HepG2 cells were evaluated using a gamma counter, confocal microscopy, and flow cytometry. PET images and biodistribution were performed in HepG2 tumor-bearing mice after injection of [68Ga]DOTA-RRL or [68Ga]GaCl3 at different time points. Further, blocking study was investigated using cold RRL.\nRESULTS: The labeling yield of [68Ga]DOTA-RRL was 80.6\u2009\u00b1\u20093.9\u00a0% with a pH of 3.5-4.5 at 100\u00a0\u00b0C for 15\u00a0min. The cellular uptake of [68Ga]DOTA-RRL in HepG2 cells was significantly higher than that of [68Ga]GaCl3 (P\u2009<\u20090.05). Moreover, the high fluorescent affinity of FITC-conjugated RRL in HepG2 cells was shown using confocal microscopy and flow cytometry. After injection of [68Ga]DOTA-RRL in HepG2 tumor-bearing mice, tumor regions exhibited high radioactive accumulation over 120\u00a0min and the highest uptake at 30\u00a0min. After blocked with cold RRL, HepG2 tumors could not be visualized. [68Ga]GaCl3 was unable to show tumor images at any time point. The biodistribution results confirmed the PET imaging and blocking results.\nCONCLUSIONS: Our study successfully prepared [68Ga]DOTA-RRL with a high labeling yield under the optimized reaction conditions and demonstrated its potential role as a PET imaging agent for tumor-targeted diagnosis.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11307-018-1234-7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1118463", 
            "issn": [
              "1536-1632", 
              "1878-5751"
            ], 
            "name": "Molecular Imaging and Biology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "21"
          }
        ], 
        "name": "Noninvasive PET Imaging of a Ga-68-Radiolabeled RRL-Derived Peptide in Hepatocarcinoma Murine Models", 
        "pagination": "1-11", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11307-018-1234-7"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "362e923e0e8d4fdd1d1150c40b979f1d0df87a87e10978305c591255d7f1e484"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1104893594"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101125610"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29916116"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11307-018-1234-7", 
          "https://app.dimensions.ai/details/publication/pub.1104893594"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-15T08:49", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000374_0000000374/records_119724_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs11307-018-1234-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11307-018-1234-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11307-018-1234-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11307-018-1234-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11307-018-1234-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    207 TRIPLES      21 PREDICATES      55 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11307-018-1234-7 schema:about anzsrc-for:11
    2 anzsrc-for:1103
    3 schema:author N313b176ad3904fd2afed85fdca43954f
    4 schema:citation sg:pub.10.1007/s00259-006-0317-x
    5 sg:pub.10.1007/s00259-009-1367-7
    6 sg:pub.10.1007/s10434-000-0743-0
    7 sg:pub.10.1007/s11670-012-0052-8
    8 sg:pub.10.1007/s12149-009-0328-3
    9 sg:pub.10.1007/s12149-015-1002-6
    10 sg:pub.10.1114/1.1513565
    11 sg:pub.10.1186/2191-219x-2-28
    12 sg:pub.10.1186/s13550-016-0227-2
    13 https://app.dimensions.ai/details/publication/pub.1077003907
    14 https://app.dimensions.ai/details/publication/pub.1078828739
    15 https://app.dimensions.ai/details/publication/pub.1079080666
    16 https://app.dimensions.ai/details/publication/pub.1082900297
    17 https://doi.org/10.1016/j.addr.2016.06.007
    18 https://doi.org/10.1016/j.apradiso.2015.10.005
    19 https://doi.org/10.1016/j.nucmedbio.2007.03.006
    20 https://doi.org/10.1016/j.nucmedbio.2013.12.003
    21 https://doi.org/10.1021/acs.jpclett.6b00452
    22 https://doi.org/10.1021/bc200197h
    23 https://doi.org/10.1039/c3cs60304k
    24 https://doi.org/10.1371/journal.pone.0061043
    25 https://doi.org/10.2174/138161212799315812
    26 https://doi.org/10.2174/1871520617666170419143459
    27 https://doi.org/10.2967/jnumed.109.069906
    28 https://doi.org/10.3892/ijmm.19.2.285
    29 https://doi.org/10.3892/mmr.2013.1338
    30 schema:datePublished 2019-04
    31 schema:datePublishedReg 2019-04-01
    32 schema:description PURPOSE: Tc-99m- and I-131-labeled arginine-arginine-leucine (RRL) peptides have shown the feasibility of tumor imaging in our previous studies. However, there have been no reports using RRL peptide for positron emission tomography (PET) imaging. In this study, RRL was radiolabeled with Ga-68 under optimized reaction conditions to develop a better specific and effective tumor imaging agent. PROCEDURES: RRL was synthesized and conjugated to a bifunctional chelating agent (DOTA-NHS), then radiolabeled with Ga-68. Labeling yield was optimized by varying pH, temperature, and reaction time and the stability was evaluated in human fresh serum. Cellular uptakes of [68Ga]DOTA-RRL and FITC-conjugated RRL in HepG2 cells were evaluated using a gamma counter, confocal microscopy, and flow cytometry. PET images and biodistribution were performed in HepG2 tumor-bearing mice after injection of [68Ga]DOTA-RRL or [68Ga]GaCl3 at different time points. Further, blocking study was investigated using cold RRL. RESULTS: The labeling yield of [68Ga]DOTA-RRL was 80.6 ± 3.9 % with a pH of 3.5-4.5 at 100 °C for 15 min. The cellular uptake of [68Ga]DOTA-RRL in HepG2 cells was significantly higher than that of [68Ga]GaCl3 (P < 0.05). Moreover, the high fluorescent affinity of FITC-conjugated RRL in HepG2 cells was shown using confocal microscopy and flow cytometry. After injection of [68Ga]DOTA-RRL in HepG2 tumor-bearing mice, tumor regions exhibited high radioactive accumulation over 120 min and the highest uptake at 30 min. After blocked with cold RRL, HepG2 tumors could not be visualized. [68Ga]GaCl3 was unable to show tumor images at any time point. The biodistribution results confirmed the PET imaging and blocking results. CONCLUSIONS: Our study successfully prepared [68Ga]DOTA-RRL with a high labeling yield under the optimized reaction conditions and demonstrated its potential role as a PET imaging agent for tumor-targeted diagnosis.
    33 schema:genre research_article
    34 schema:inLanguage en
    35 schema:isAccessibleForFree false
    36 schema:isPartOf Nf03f174970ac4f139856b6e0ba1d7b98
    37 Nf63e58e400b044b5b2150ff17105c799
    38 sg:journal.1118463
    39 schema:name Noninvasive PET Imaging of a Ga-68-Radiolabeled RRL-Derived Peptide in Hepatocarcinoma Murine Models
    40 schema:pagination 1-11
    41 schema:productId N08a97a85e0c145c986f84930a0e973b4
    42 N1ab498e65f1648729662ac78c75c7669
    43 N214cd0dae2f54c74830c385f1d18f871
    44 N4ac33ee320d4404393f3f9e001e2e388
    45 Nba4b56b916d34bb7aa052549cccd03b2
    46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104893594
    47 https://doi.org/10.1007/s11307-018-1234-7
    48 schema:sdDatePublished 2019-04-15T08:49
    49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    50 schema:sdPublisher Nc790993966ad4b59a63bf65fd0c3ee8b
    51 schema:url https://link.springer.com/10.1007%2Fs11307-018-1234-7
    52 sgo:license sg:explorer/license/
    53 sgo:sdDataset articles
    54 rdf:type schema:ScholarlyArticle
    55 N08a97a85e0c145c986f84930a0e973b4 schema:name readcube_id
    56 schema:value 362e923e0e8d4fdd1d1150c40b979f1d0df87a87e10978305c591255d7f1e484
    57 rdf:type schema:PropertyValue
    58 N0d53e82e6dde4be7a594c71c34d43c84 rdf:first sg:person.01053425334.18
    59 rdf:rest Nbbf0f550e2e04e53b38f6f8ae93b9d81
    60 N1ab498e65f1648729662ac78c75c7669 schema:name dimensions_id
    61 schema:value pub.1104893594
    62 rdf:type schema:PropertyValue
    63 N1ee0d0c28ecc408f8141b0364fb9bba1 rdf:first Nbc6c37f235274638b7422367f5445569
    64 rdf:rest N0d53e82e6dde4be7a594c71c34d43c84
    65 N214cd0dae2f54c74830c385f1d18f871 schema:name pubmed_id
    66 schema:value 29916116
    67 rdf:type schema:PropertyValue
    68 N313b176ad3904fd2afed85fdca43954f rdf:first sg:person.01141371137.83
    69 rdf:rest Nf5f1920914714609be74bf462e7ac4ae
    70 N4ac33ee320d4404393f3f9e001e2e388 schema:name doi
    71 schema:value 10.1007/s11307-018-1234-7
    72 rdf:type schema:PropertyValue
    73 N8155bc81db15413c8489c5b4d30bbd48 rdf:first sg:person.011643474312.72
    74 rdf:rest N1ee0d0c28ecc408f8141b0364fb9bba1
    75 Na29a18df56c543148a0eff12f614709f rdf:first sg:person.0712223160.69
    76 rdf:rest rdf:nil
    77 Nba4b56b916d34bb7aa052549cccd03b2 schema:name nlm_unique_id
    78 schema:value 101125610
    79 rdf:type schema:PropertyValue
    80 Nbbf0f550e2e04e53b38f6f8ae93b9d81 rdf:first sg:person.01052236127.13
    81 rdf:rest Ne9ae9a9c1bec4caa8f688c774cbf3902
    82 Nbc6c37f235274638b7422367f5445569 schema:affiliation https://www.grid.ac/institutes/grid.411472.5
    83 schema:familyName Shen
    84 schema:givenName Haoyuan
    85 rdf:type schema:Person
    86 Nc790993966ad4b59a63bf65fd0c3ee8b schema:name Springer Nature - SN SciGraph project
    87 rdf:type schema:Organization
    88 Nd866d29d58484464803373f0cdb83542 rdf:first sg:person.01234577727.76
    89 rdf:rest Na29a18df56c543148a0eff12f614709f
    90 Ne9ae9a9c1bec4caa8f688c774cbf3902 rdf:first sg:person.01023704620.54
    91 rdf:rest Nd866d29d58484464803373f0cdb83542
    92 Nf03f174970ac4f139856b6e0ba1d7b98 schema:volumeNumber 21
    93 rdf:type schema:PublicationVolume
    94 Nf5f1920914714609be74bf462e7ac4ae rdf:first sg:person.01370703365.08
    95 rdf:rest N8155bc81db15413c8489c5b4d30bbd48
    96 Nf63e58e400b044b5b2150ff17105c799 schema:issueNumber 2
    97 rdf:type schema:PublicationIssue
    98 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Medical and Health Sciences
    100 rdf:type schema:DefinedTerm
    101 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    102 schema:name Clinical Sciences
    103 rdf:type schema:DefinedTerm
    104 sg:journal.1118463 schema:issn 1536-1632
    105 1878-5751
    106 schema:name Molecular Imaging and Biology
    107 rdf:type schema:Periodical
    108 sg:person.01023704620.54 schema:affiliation https://www.grid.ac/institutes/grid.411472.5
    109 schema:familyName Liao
    110 schema:givenName Xuhe
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023704620.54
    112 rdf:type schema:Person
    113 sg:person.01052236127.13 schema:affiliation https://www.grid.ac/institutes/grid.411472.5
    114 schema:familyName Zhang
    115 schema:givenName Chunli
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052236127.13
    117 rdf:type schema:Person
    118 sg:person.01053425334.18 schema:affiliation https://www.grid.ac/institutes/grid.411472.5
    119 schema:familyName Yan
    120 schema:givenName Ping
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053425334.18
    122 rdf:type schema:Person
    123 sg:person.01141371137.83 schema:affiliation https://www.grid.ac/institutes/grid.411472.5
    124 schema:familyName Huo
    125 schema:givenName Yan
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141371137.83
    127 rdf:type schema:Person
    128 sg:person.011643474312.72 schema:affiliation https://www.grid.ac/institutes/grid.411472.5
    129 schema:familyName Pang
    130 schema:givenName Xiaoxi
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011643474312.72
    132 rdf:type schema:Person
    133 sg:person.01234577727.76 schema:affiliation https://www.grid.ac/institutes/grid.411472.5
    134 schema:familyName Chen
    135 schema:givenName Xueqi
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234577727.76
    137 rdf:type schema:Person
    138 sg:person.01370703365.08 schema:affiliation https://www.grid.ac/institutes/grid.411472.5
    139 schema:familyName Kang
    140 schema:givenName Lei
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370703365.08
    142 rdf:type schema:Person
    143 sg:person.0712223160.69 schema:affiliation https://www.grid.ac/institutes/grid.411472.5
    144 schema:familyName Wang
    145 schema:givenName Rongfu
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712223160.69
    147 rdf:type schema:Person
    148 sg:pub.10.1007/s00259-006-0317-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039271748
    149 https://doi.org/10.1007/s00259-006-0317-x
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/s00259-009-1367-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025550546
    152 https://doi.org/10.1007/s00259-009-1367-7
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/s10434-000-0743-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006319679
    155 https://doi.org/10.1007/s10434-000-0743-0
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/s11670-012-0052-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020394383
    158 https://doi.org/10.1007/s11670-012-0052-8
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/s12149-009-0328-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044512619
    161 https://doi.org/10.1007/s12149-009-0328-3
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/s12149-015-1002-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036862146
    164 https://doi.org/10.1007/s12149-015-1002-6
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1114/1.1513565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011110117
    167 https://doi.org/10.1114/1.1513565
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1186/2191-219x-2-28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045299387
    170 https://doi.org/10.1186/2191-219x-2-28
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1186/s13550-016-0227-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012606492
    173 https://doi.org/10.1186/s13550-016-0227-2
    174 rdf:type schema:CreativeWork
    175 https://app.dimensions.ai/details/publication/pub.1077003907 schema:CreativeWork
    176 https://app.dimensions.ai/details/publication/pub.1078828739 schema:CreativeWork
    177 https://app.dimensions.ai/details/publication/pub.1079080666 schema:CreativeWork
    178 https://app.dimensions.ai/details/publication/pub.1082900297 schema:CreativeWork
    179 https://doi.org/10.1016/j.addr.2016.06.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006643096
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1016/j.apradiso.2015.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006794271
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1016/j.nucmedbio.2007.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053085292
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1016/j.nucmedbio.2013.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007960804
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1021/acs.jpclett.6b00452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055114329
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1021/bc200197h schema:sameAs https://app.dimensions.ai/details/publication/pub.1055154634
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1039/c3cs60304k schema:sameAs https://app.dimensions.ai/details/publication/pub.1033179543
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1371/journal.pone.0061043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052896439
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.2174/138161212799315812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069168014
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.2174/1871520617666170419143459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085236511
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.2967/jnumed.109.069906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024746823
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.3892/ijmm.19.2.285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071506540
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.3892/mmr.2013.1338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071520910
    204 rdf:type schema:CreativeWork
    205 https://www.grid.ac/institutes/grid.411472.5 schema:alternateName Peking University First Hospital
    206 schema:name Department of Nuclear Medicine, Peking University First Hospital, No. 8 St. Xishiku, 100034, Beijing, China
    207 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...