Computed Tomography-Based Biomarker for Longitudinal Assessment of Disease Burden in Pulmonary Tuberculosis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

P. M. Gordaliza, A. Muñoz-Barrutia, L. E. Via, S. Sharpe, M. Desco, J. J. Vaquero

ABSTRACT

PURPOSE: Computed tomography (CT) images enable capturing specific manifestations of tuberculosis (TB) that are undetectable using common diagnostic tests, which suffer from limited specificity. In this study, we aimed to automatically quantify the burden of Mycobacterium tuberculosis (Mtb) using biomarkers extracted from x-ray CT images. PROCEDURES: Nine macaques were aerosol-infected with Mtb and treated with various antibiotic cocktails. Chest CT scans were acquired in all animals at specific times independently of disease progression. First, a fully automatic segmentation of the healthy lungs from the acquired chest CT volumes was performed and air-like structures were extracted. Next, unsegmented pulmonary regions corresponding to damaged parenchymal tissue and TB lesions were included. CT biomarkers were extracted by classification of the probability distribution of the intensity of the segmented images into three tissue types: (1) Healthy tissue, parenchyma free from infection; (2) soft diseased tissue, and (3) hard diseased tissue. The probability distribution of tissue intensities was assumed to follow a Gaussian mixture model. The thresholds identifying each region were automatically computed using an expectation-maximization algorithm. RESULTS: The estimated longitudinal course of TB infection shows that subjects that have followed the same antibiotic treatment present a similar response (relative change in the diseased volume) with respect to baseline. More interestingly, the correlation between the diseased volume (soft tissue + hard tissue), which was manually delineated by an expert, and the automatically extracted volume with the proposed method was very strong (R2 ≈ 0.8). CONCLUSIONS: We present a methodology that is suitable for automatic extraction of a radiological biomarker from CT images for TB disease burden. The method could be used to describe the longitudinal evolution of Mtb infection in a clinical trial devoted to the design of new drugs. More... »

PAGES

19-24

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11307-018-1215-x

DOI

http://dx.doi.org/10.1007/s11307-018-1215-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104291094

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29845428


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hospital General Universitario Gregorio Mara\u00f1\u00f3n", 
          "id": "https://www.grid.ac/institutes/grid.410526.4", 
          "name": [
            "Dpto. Bioingenier\u00eda e Ingenier\u00eda Aeroespacial, Universidad Carlos III de Madrid, Legan\u00e9s, Spain", 
            "Instituto de Investigaci\u00f3n Sanitaria Gregorio Mara\u00f1\u00f3n, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gordaliza", 
        "givenName": "P. M.", 
        "id": "sg:person.01133275762.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133275762.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital General Universitario Gregorio Mara\u00f1\u00f3n", 
          "id": "https://www.grid.ac/institutes/grid.410526.4", 
          "name": [
            "Dpto. Bioingenier\u00eda e Ingenier\u00eda Aeroespacial, Universidad Carlos III de Madrid, Legan\u00e9s, Spain", 
            "Instituto de Investigaci\u00f3n Sanitaria Gregorio Mara\u00f1\u00f3n, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mu\u00f1oz-Barrutia", 
        "givenName": "A.", 
        "id": "sg:person.0744216421.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744216421.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Tuberculosis Research Section, LCIM, and Tuberculosis Imaging Program, DIR, NIAID, NIH, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Via", 
        "givenName": "L. E.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Health", 
          "id": "https://www.grid.ac/institutes/grid.57981.32", 
          "name": [
            "National Infections Service, Public Health England, Porton Down, England"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sharpe", 
        "givenName": "S.", 
        "id": "sg:person.01276022012.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276022012.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centro de Investigaci\u00f3n Biom\u00e9dica en Red de Salud Mental", 
          "id": "https://www.grid.ac/institutes/grid.469673.9", 
          "name": [
            "Dpto. Bioingenier\u00eda e Ingenier\u00eda Aeroespacial, Universidad Carlos III de Madrid, Legan\u00e9s, Spain", 
            "Instituto de Investigaci\u00f3n Sanitaria Gregorio Mara\u00f1\u00f3n, Madrid, Spain", 
            "Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain", 
            "Centro de Investigaci\u00f3n Biom\u00e9dica en Red de Salud Mental, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Desco", 
        "givenName": "M.", 
        "id": "sg:person.07426371137.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07426371137.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital General Universitario Gregorio Mara\u00f1\u00f3n", 
          "id": "https://www.grid.ac/institutes/grid.410526.4", 
          "name": [
            "Dpto. Bioingenier\u00eda e Ingenier\u00eda Aeroespacial, Universidad Carlos III de Madrid, Legan\u00e9s, Spain", 
            "Instituto de Investigaci\u00f3n Sanitaria Gregorio Mara\u00f1\u00f3n, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vaquero", 
        "givenName": "J. J.", 
        "id": "sg:person.016417126340.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016417126340.98"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1128/iai.00632-13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004480918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tube.2015.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005697475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/rg.2015140232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009503770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aac.00531-12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020342757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1007979827043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020899731", 
          "https://doi.org/10.1023/a:1007979827043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm.2971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021890497", 
          "https://doi.org/10.1038/nm.2971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1473-3099(13)70034-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030935608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrdp.2016.76", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033704609", 
          "https://doi.org/10.1038/nrdp.2016.76"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00251-011-0567-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041104945", 
          "https://doi.org/10.1007/s00251-011-0567-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aac.00115-15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045566516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/74.2.321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059419694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.929615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061171044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/scitranslmed.3009501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062688445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/rg.2017160032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079389602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrclinonc.2017.141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092061102", 
          "https://doi.org/10.1038/nrclinonc.2017.141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isbi.2010.5490282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095750331"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "PURPOSE: Computed tomography (CT) images enable capturing specific manifestations of tuberculosis (TB) that are undetectable using common diagnostic tests, which suffer from limited specificity. In this study, we aimed to automatically quantify the burden of Mycobacterium tuberculosis (Mtb) using biomarkers extracted from x-ray CT images.\nPROCEDURES: Nine macaques were aerosol-infected with Mtb and treated with various antibiotic cocktails. Chest CT scans were acquired in all animals at specific times independently of disease progression. First, a fully automatic segmentation of the healthy lungs from the acquired chest CT volumes was performed and air-like structures were extracted. Next, unsegmented pulmonary regions corresponding to damaged parenchymal tissue and TB lesions were included. CT biomarkers were extracted by classification of the probability distribution of the intensity of the segmented images into three tissue types: (1) Healthy tissue, parenchyma free from infection; (2) soft diseased tissue, and (3) hard diseased tissue. The probability distribution of tissue intensities was assumed to follow a Gaussian mixture model. The thresholds identifying each region were automatically computed using an expectation-maximization algorithm.\nRESULTS: The estimated longitudinal course of TB infection shows that subjects that have followed the same antibiotic treatment present a similar response (relative change in the diseased volume) with respect to baseline. More interestingly, the correlation between the diseased volume (soft tissue + hard tissue), which was manually delineated by an expert, and the automatically extracted volume with the proposed method was very strong (R2\u00a0\u2248\u00a00.8).\nCONCLUSIONS: We present a methodology that is suitable for automatic extraction of a radiological biomarker from CT images for TB disease burden. The method could be used to describe the longitudinal evolution of Mtb infection in a clinical trial devoted to the design of new drugs.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11307-018-1215-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1118463", 
        "issn": [
          "1536-1632", 
          "1878-5751"
        ], 
        "name": "Molecular Imaging and Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "Computed Tomography-Based Biomarker for Longitudinal Assessment of Disease Burden in Pulmonary Tuberculosis", 
    "pagination": "19-24", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bd222602d3965fd50c1871d53ca52a590ad8bc80954610ec86acb5984b457127"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29845428"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101125610"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11307-018-1215-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104291094"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11307-018-1215-x", 
      "https://app.dimensions.ai/details/publication/pub.1104291094"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60357_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11307-018-1215-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11307-018-1215-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11307-018-1215-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11307-018-1215-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11307-018-1215-x'


 

This table displays all metadata directly associated to this object as RDF triples.

168 TRIPLES      21 PREDICATES      45 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11307-018-1215-x schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N8aedf595d35d4207adebcaeffc8d14d6
4 schema:citation sg:pub.10.1007/s00251-011-0567-z
5 sg:pub.10.1023/a:1007979827043
6 sg:pub.10.1038/nm.2971
7 sg:pub.10.1038/nrclinonc.2017.141
8 sg:pub.10.1038/nrdp.2016.76
9 https://doi.org/10.1016/j.tube.2015.10.004
10 https://doi.org/10.1016/s1473-3099(13)70034-3
11 https://doi.org/10.1093/biomet/74.2.321
12 https://doi.org/10.1109/42.929615
13 https://doi.org/10.1109/isbi.2010.5490282
14 https://doi.org/10.1126/scitranslmed.3009501
15 https://doi.org/10.1128/aac.00115-15
16 https://doi.org/10.1128/aac.00531-12
17 https://doi.org/10.1128/iai.00632-13
18 https://doi.org/10.1148/rg.2015140232
19 https://doi.org/10.1148/rg.2017160032
20 schema:datePublished 2019-02
21 schema:datePublishedReg 2019-02-01
22 schema:description PURPOSE: Computed tomography (CT) images enable capturing specific manifestations of tuberculosis (TB) that are undetectable using common diagnostic tests, which suffer from limited specificity. In this study, we aimed to automatically quantify the burden of Mycobacterium tuberculosis (Mtb) using biomarkers extracted from x-ray CT images. PROCEDURES: Nine macaques were aerosol-infected with Mtb and treated with various antibiotic cocktails. Chest CT scans were acquired in all animals at specific times independently of disease progression. First, a fully automatic segmentation of the healthy lungs from the acquired chest CT volumes was performed and air-like structures were extracted. Next, unsegmented pulmonary regions corresponding to damaged parenchymal tissue and TB lesions were included. CT biomarkers were extracted by classification of the probability distribution of the intensity of the segmented images into three tissue types: (1) Healthy tissue, parenchyma free from infection; (2) soft diseased tissue, and (3) hard diseased tissue. The probability distribution of tissue intensities was assumed to follow a Gaussian mixture model. The thresholds identifying each region were automatically computed using an expectation-maximization algorithm. RESULTS: The estimated longitudinal course of TB infection shows that subjects that have followed the same antibiotic treatment present a similar response (relative change in the diseased volume) with respect to baseline. More interestingly, the correlation between the diseased volume (soft tissue + hard tissue), which was manually delineated by an expert, and the automatically extracted volume with the proposed method was very strong (R2 ≈ 0.8). CONCLUSIONS: We present a methodology that is suitable for automatic extraction of a radiological biomarker from CT images for TB disease burden. The method could be used to describe the longitudinal evolution of Mtb infection in a clinical trial devoted to the design of new drugs.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N3780fdd6342547299feee1fab546cae9
27 N8e2de2a8296c4630af125ee4416ace36
28 sg:journal.1118463
29 schema:name Computed Tomography-Based Biomarker for Longitudinal Assessment of Disease Burden in Pulmonary Tuberculosis
30 schema:pagination 19-24
31 schema:productId N076b50d4c8074493b88516f242aaba75
32 N24bcbc362f924a909a8898f1cbea3c27
33 N57295dd3fd3c44ed8aac395396844c72
34 N78b13a7678f04bfdb59f3d3d4738b8d9
35 N8c9c990ef01941ac91d04a599b9394f6
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104291094
37 https://doi.org/10.1007/s11307-018-1215-x
38 schema:sdDatePublished 2019-04-11T11:03
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher Ne0bad42716ca41298cca3f16922bcee9
41 schema:url https://link.springer.com/10.1007%2Fs11307-018-1215-x
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N076b50d4c8074493b88516f242aaba75 schema:name nlm_unique_id
46 schema:value 101125610
47 rdf:type schema:PropertyValue
48 N24bcbc362f924a909a8898f1cbea3c27 schema:name readcube_id
49 schema:value bd222602d3965fd50c1871d53ca52a590ad8bc80954610ec86acb5984b457127
50 rdf:type schema:PropertyValue
51 N3780fdd6342547299feee1fab546cae9 schema:issueNumber 1
52 rdf:type schema:PublicationIssue
53 N57295dd3fd3c44ed8aac395396844c72 schema:name doi
54 schema:value 10.1007/s11307-018-1215-x
55 rdf:type schema:PropertyValue
56 N58e42b002382495197dcf3c8211278fc schema:name Tuberculosis Research Section, LCIM, and Tuberculosis Imaging Program, DIR, NIAID, NIH, Bethesda, MD, USA
57 rdf:type schema:Organization
58 N6539fc26aa6b4ed1a58fe8d33df8fdc6 rdf:first sg:person.01276022012.23
59 rdf:rest N7697a65ddaa24cba956ff0b5420a5259
60 N7697a65ddaa24cba956ff0b5420a5259 rdf:first sg:person.07426371137.85
61 rdf:rest Ne0d906a5ed00437e911f67eecd8391db
62 N78b13a7678f04bfdb59f3d3d4738b8d9 schema:name dimensions_id
63 schema:value pub.1104291094
64 rdf:type schema:PropertyValue
65 N8aedf595d35d4207adebcaeffc8d14d6 rdf:first sg:person.01133275762.14
66 rdf:rest Neb699c6b280a4c14b9f397f7fa77f43f
67 N8b681065d2bc48acb2cdcfe48e96e02a rdf:first Nc375ffca82454a6cb390d40f83d9c77c
68 rdf:rest N6539fc26aa6b4ed1a58fe8d33df8fdc6
69 N8c9c990ef01941ac91d04a599b9394f6 schema:name pubmed_id
70 schema:value 29845428
71 rdf:type schema:PropertyValue
72 N8e2de2a8296c4630af125ee4416ace36 schema:volumeNumber 21
73 rdf:type schema:PublicationVolume
74 Nc375ffca82454a6cb390d40f83d9c77c schema:affiliation N58e42b002382495197dcf3c8211278fc
75 schema:familyName Via
76 schema:givenName L. E.
77 rdf:type schema:Person
78 Ne0bad42716ca41298cca3f16922bcee9 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 Ne0d906a5ed00437e911f67eecd8391db rdf:first sg:person.016417126340.98
81 rdf:rest rdf:nil
82 Neb699c6b280a4c14b9f397f7fa77f43f rdf:first sg:person.0744216421.80
83 rdf:rest N8b681065d2bc48acb2cdcfe48e96e02a
84 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
85 schema:name Medical and Health Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
88 schema:name Clinical Sciences
89 rdf:type schema:DefinedTerm
90 sg:journal.1118463 schema:issn 1536-1632
91 1878-5751
92 schema:name Molecular Imaging and Biology
93 rdf:type schema:Periodical
94 sg:person.01133275762.14 schema:affiliation https://www.grid.ac/institutes/grid.410526.4
95 schema:familyName Gordaliza
96 schema:givenName P. M.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133275762.14
98 rdf:type schema:Person
99 sg:person.01276022012.23 schema:affiliation https://www.grid.ac/institutes/grid.57981.32
100 schema:familyName Sharpe
101 schema:givenName S.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276022012.23
103 rdf:type schema:Person
104 sg:person.016417126340.98 schema:affiliation https://www.grid.ac/institutes/grid.410526.4
105 schema:familyName Vaquero
106 schema:givenName J. J.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016417126340.98
108 rdf:type schema:Person
109 sg:person.07426371137.85 schema:affiliation https://www.grid.ac/institutes/grid.469673.9
110 schema:familyName Desco
111 schema:givenName M.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07426371137.85
113 rdf:type schema:Person
114 sg:person.0744216421.80 schema:affiliation https://www.grid.ac/institutes/grid.410526.4
115 schema:familyName Muñoz-Barrutia
116 schema:givenName A.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744216421.80
118 rdf:type schema:Person
119 sg:pub.10.1007/s00251-011-0567-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1041104945
120 https://doi.org/10.1007/s00251-011-0567-z
121 rdf:type schema:CreativeWork
122 sg:pub.10.1023/a:1007979827043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020899731
123 https://doi.org/10.1023/a:1007979827043
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/nm.2971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021890497
126 https://doi.org/10.1038/nm.2971
127 rdf:type schema:CreativeWork
128 sg:pub.10.1038/nrclinonc.2017.141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092061102
129 https://doi.org/10.1038/nrclinonc.2017.141
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/nrdp.2016.76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033704609
132 https://doi.org/10.1038/nrdp.2016.76
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.tube.2015.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005697475
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/s1473-3099(13)70034-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030935608
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1093/biomet/74.2.321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059419694
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/42.929615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061171044
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/isbi.2010.5490282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095750331
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1126/scitranslmed.3009501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062688445
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1128/aac.00115-15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045566516
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1128/aac.00531-12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020342757
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1128/iai.00632-13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004480918
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1148/rg.2015140232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009503770
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1148/rg.2017160032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079389602
155 rdf:type schema:CreativeWork
156 https://www.grid.ac/institutes/grid.410526.4 schema:alternateName Hospital General Universitario Gregorio Marañón
157 schema:name Dpto. Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, Spain
158 Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
159 rdf:type schema:Organization
160 https://www.grid.ac/institutes/grid.469673.9 schema:alternateName Centro de Investigación Biomédica en Red de Salud Mental
161 schema:name Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
162 Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain
163 Dpto. Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, Spain
164 Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
165 rdf:type schema:Organization
166 https://www.grid.ac/institutes/grid.57981.32 schema:alternateName Department of Health
167 schema:name National Infections Service, Public Health England, Porton Down, England
168 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...