PSMA-Based [18F]DCFPyL PET/CT Is Superior to Conventional Imaging for Lesion Detection in Patients with Metastatic Prostate Cancer View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-06

AUTHORS

Steven P. Rowe, Katarzyna J. Macura, Esther Mena, Amanda L. Blackford, Rosa Nadal, Emmanuel S. Antonarakis, Mario Eisenberger, Michael Carducci, Hong Fan, Robert F. Dannals, Ying Chen, Ronnie C. Mease, Zsolt Szabo, Martin G. Pomper, Steve Y. Cho

ABSTRACT

PURPOSE: Current standard of care conventional imaging modalities (CIM) such as X-ray computed tomography (CT) and bone scan can be limited for detection of metastatic prostate cancer and therefore improved imaging methods are an unmet clinical need. We evaluated the utility of a novel second-generation low molecular weight radiofluorinated prostate-specific membrane antigen (PSMA)-targeted positron emission tomography (PET) radiotracer, [(18)F]DCFPyL, in patients with metastatic prostate cancer. PROCEDURES: Nine patients with suspected prostate cancer recurrence, eight with CIM evidence of metastatic prostate cancer and one with biochemical recurrence, were imaged with [(18)F]DCFPyL PET/CT. Eight of the patients had contemporaneous CIM for comparison. A lesion-by-lesion comparison of the detection of suspected sites of metastatic prostate cancer was carried out between PET and CIM. Statistical analysis for estimated proportions of inter-modality agreement for detection of metastatic disease was calculated accounting for intra-patient correlation using general estimating equation (GEE) intercept-only regression models. RESULTS: One hundred thirty-nine sites of PET positive [(18)F]DCFPyL uptake (138 definite, 1 equivocal) for metastatic disease were detected in the eight patients with available comparison CIM. By contrast, only 45 lesions were identified on CIM (30 definite, 15 equivocal). When lesions were negative or equivocal on CIM, it was estimated that a large portion of these lesions or 0.72 (95 % confidence interval (CI) 0.55-0.84) would be positive on [(18)F]DCFPyL PET. Conversely, of those lesions negative or equivocal on [(18)F]DCFPyL PET, it was estimated that only a very small proportion or 0.03 (95 % CI 0.01-0.07) would be positive on CIM. Delayed 2-h-post-injection time point PET yielded higher tumor radiotracer uptake and higher tumor-to-background ratios than an earlier 1-h-post-injection time point. CONCLUSIONS: A novel PSMA-targeted PET radiotracer, [(18)F]DCFPyL, was able to a large number of suspected sites of prostate cancer, many of which were occult or equivocal by CIM. This study provides strong preliminary evidence for the use of this second-generation PSMA-targeted PET radiotracer for detection of metastatic prostate cancer and lends further support for the importance of PSMA-targeted PET imaging in prostate cancer. More... »

PAGES

411-419

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11307-016-0957-6

DOI

http://dx.doi.org/10.1007/s11307-016-0957-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011382226

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27080322


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Demography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lysine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Positron Emission Tomography Computed Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prostate-Specific Antigen", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prostatic Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Regression Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Urea", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Whole Body Imaging", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rowe", 
        "givenName": "Steven P.", 
        "id": "sg:person.0720454217.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720454217.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Macura", 
        "givenName": "Katarzyna J.", 
        "id": "sg:person.01065422544.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065422544.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mena", 
        "givenName": "Esther", 
        "id": "sg:person.01345436437.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345436437.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Department of Oncology in the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blackford", 
        "givenName": "Amanda L.", 
        "id": "sg:person.01003562505.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003562505.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Department of Oncology in the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nadal", 
        "givenName": "Rosa", 
        "id": "sg:person.0776732334.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776732334.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Department of Oncology in the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Antonarakis", 
        "givenName": "Emmanuel S.", 
        "id": "sg:person.01050245067.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050245067.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Department of Oncology in the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eisenberger", 
        "givenName": "Mario", 
        "id": "sg:person.01103756143.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103756143.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Department of Oncology in the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carducci", 
        "givenName": "Michael", 
        "id": "sg:person.01266317743.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266317743.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Hong", 
        "id": "sg:person.0740704240.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740704240.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dannals", 
        "givenName": "Robert F.", 
        "id": "sg:person.0777134474.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777134474.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Ying", 
        "id": "sg:person.0707173104.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707173104.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mease", 
        "givenName": "Ronnie C.", 
        "id": "sg:person.015337602767.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015337602767.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Szabo", 
        "givenName": "Zsolt", 
        "id": "sg:person.01077255525.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077255525.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pomper", 
        "givenName": "Martin G.", 
        "id": "sg:person.0620411205.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620411205.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013Madison", 
          "id": "https://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA", 
            "Department of Radiology, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR1 Rm 7139, 53593, Madison, WI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cho", 
        "givenName": "Steve Y.", 
        "id": "sg:person.014123762057.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014123762057.20"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.7150/thno.7324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000255885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/73.1.13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005412165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11307-015-0866-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006839268", 
          "https://doi.org/10.1007/s11307-015-0866-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11307-015-0866-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006839268", 
          "https://doi.org/10.1007/s11307-015-0866-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.juro.2013.10.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009807759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-08-2328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010044151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eururo.2013.04.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010087586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-013-2525-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010481232", 
          "https://doi.org/10.1007/s00259-013-2525-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-013-2525-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010481232", 
          "https://doi.org/10.1007/s00259-013-2525-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.115.163782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012955958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-1119(02)00397-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013071089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-014-2830-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014523383", 
          "https://doi.org/10.1007/s00259-014-2830-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/bju.12279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015021129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.112.104661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017523970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.115.161299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019234461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1106383108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019320835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.115.154336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022357114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.11102023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023902579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2010.07.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025167997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-010-1496-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028870172", 
          "https://doi.org/10.1007/s00259-010-1496-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-010-1496-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028870172", 
          "https://doi.org/10.1007/s00259-010-1496-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.114.147116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029315874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/pcan.2011.35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029565878", 
          "https://doi.org/10.1038/pcan.2011.35"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.115.154153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030714440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eururo.2012.09.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032849052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11307-015-0850-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033167477", 
          "https://doi.org/10.1007/s11307-015-0850-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-11-1357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036262827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3322/caac.21208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041182772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apradiso.2012.06.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042939071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rlu.0b013e3182867f3c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043161854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.115.160382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043759484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.110.077941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045636036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.humpath.2006.11.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046722707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/mp500164r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049803197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0090-4295(96)00184-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049889834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pros.21065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050465787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pros.21065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050465787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-012-2298-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051179630", 
          "https://doi.org/10.1007/s00259-012-2298-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/scitranslmed.aaa1009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062688597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/092986712799462612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069162433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/1568026611313080002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069194628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076617276", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077298893", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077344489", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-06", 
    "datePublishedReg": "2016-06-01", 
    "description": "PURPOSE: Current standard of care conventional imaging modalities (CIM) such as X-ray computed tomography (CT) and bone scan can be limited for detection of metastatic prostate cancer and therefore improved imaging methods are an unmet clinical need. We evaluated the utility of a novel second-generation low molecular weight radiofluorinated prostate-specific membrane antigen (PSMA)-targeted positron emission tomography (PET) radiotracer, [(18)F]DCFPyL, in patients with metastatic prostate cancer.\nPROCEDURES: Nine patients with suspected prostate cancer recurrence, eight with CIM evidence of metastatic prostate cancer and one with biochemical recurrence, were imaged with [(18)F]DCFPyL PET/CT. Eight of the patients had contemporaneous CIM for comparison. A lesion-by-lesion comparison of the detection of suspected sites of metastatic prostate cancer was carried out between PET and CIM. Statistical analysis for estimated proportions of inter-modality agreement for detection of metastatic disease was calculated accounting for intra-patient correlation using general estimating equation (GEE) intercept-only regression models.\nRESULTS: One hundred thirty-nine sites of PET positive [(18)F]DCFPyL uptake (138 definite, 1 equivocal) for metastatic disease were detected in the eight patients with available comparison CIM. By contrast, only 45 lesions were identified on CIM (30 definite, 15 equivocal). When lesions were negative or equivocal on CIM, it was estimated that a large portion of these lesions or 0.72 (95\u00a0% confidence interval (CI) 0.55-0.84) would be positive on [(18)F]DCFPyL PET. Conversely, of those lesions negative or equivocal on [(18)F]DCFPyL PET, it was estimated that only a very small proportion or 0.03 (95\u00a0% CI 0.01-0.07) would be positive on CIM. Delayed 2-h-post-injection time point PET yielded higher tumor radiotracer uptake and higher tumor-to-background ratios than an earlier 1-h-post-injection time point.\nCONCLUSIONS: A novel PSMA-targeted PET radiotracer, [(18)F]DCFPyL, was able to a large number of suspected sites of prostate cancer, many of which were occult or equivocal by CIM. This study provides strong preliminary evidence for the use of this second-generation PSMA-targeted PET radiotracer for detection of metastatic prostate cancer and lends further support for the importance of PSMA-targeted PET imaging in prostate cancer.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11307-016-0957-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2438791", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3803645", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2479967", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2440204", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4176842", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1118463", 
        "issn": [
          "1536-1632", 
          "1878-5751"
        ], 
        "name": "Molecular Imaging and Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "PSMA-Based [18F]DCFPyL PET/CT Is Superior to Conventional Imaging for Lesion Detection in Patients with Metastatic Prostate Cancer", 
    "pagination": "411-419", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "363a9b86fb88edf644c7ae32b421d03ed4f30585bc98c19b1374efddbac31999"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27080322"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101125610"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11307-016-0957-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011382226"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11307-016-0957-6", 
      "https://app.dimensions.ai/details/publication/pub.1011382226"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000520.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11307-016-0957-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11307-016-0957-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11307-016-0957-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11307-016-0957-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11307-016-0957-6'


 

This table displays all metadata directly associated to this object as RDF triples.

358 TRIPLES      21 PREDICATES      82 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11307-016-0957-6 schema:about N171c006d7c01432db9c97db45e60b191
2 N2c76a80f880f470a87cf093fd602722b
3 N2f6f6209ad0f4cee842a33da031c1d1e
4 N3e6958a0559e4cf2a5ac304fe4c1bc67
5 N402f91972b7241e69676e7244ca44da9
6 N52e4b2c5fd10412fb72b5e1704c3cde4
7 N6ccc5267f8ed45e3acadf13ec1dbba5b
8 N7dcf0922b3b24db8b7209235508d46cf
9 Nc0ceb2f447c841849207a9ff86180537
10 Nddd990f8324c4c48ab2e6535e85984b1
11 Ne1e5aa53337d47d4bf9b763ef56fca07
12 Nea882d25c07f4481b514f3f820558bb1
13 Ned1eed467b5c4918b9864c7c2e696387
14 anzsrc-for:11
15 anzsrc-for:1112
16 schema:author N4e7721fffe284f4f8005a08ffef483ca
17 schema:citation sg:pub.10.1007/s00259-010-1496-z
18 sg:pub.10.1007/s00259-012-2298-2
19 sg:pub.10.1007/s00259-013-2525-5
20 sg:pub.10.1007/s00259-014-2830-7
21 sg:pub.10.1007/s11307-015-0850-8
22 sg:pub.10.1007/s11307-015-0866-0
23 sg:pub.10.1038/pcan.2011.35
24 https://app.dimensions.ai/details/publication/pub.1076617276
25 https://app.dimensions.ai/details/publication/pub.1077298893
26 https://app.dimensions.ai/details/publication/pub.1077344489
27 https://doi.org/10.1002/pros.21065
28 https://doi.org/10.1016/j.apradiso.2012.06.034
29 https://doi.org/10.1016/j.ejrad.2010.07.023
30 https://doi.org/10.1016/j.eururo.2012.09.039
31 https://doi.org/10.1016/j.eururo.2013.04.019
32 https://doi.org/10.1016/j.humpath.2006.11.012
33 https://doi.org/10.1016/j.juro.2013.10.041
34 https://doi.org/10.1016/s0090-4295(96)00184-7
35 https://doi.org/10.1016/s0378-1119(02)00397-9
36 https://doi.org/10.1021/mp500164r
37 https://doi.org/10.1073/pnas.1106383108
38 https://doi.org/10.1093/biomet/73.1.13
39 https://doi.org/10.1097/rlu.0b013e3182867f3c
40 https://doi.org/10.1111/bju.12279
41 https://doi.org/10.1126/scitranslmed.aaa1009
42 https://doi.org/10.1148/radiol.11102023
43 https://doi.org/10.1158/0008-5472.can-08-2328
44 https://doi.org/10.1158/1078-0432.ccr-11-1357
45 https://doi.org/10.2174/092986712799462612
46 https://doi.org/10.2174/1568026611313080002
47 https://doi.org/10.2967/jnumed.110.077941
48 https://doi.org/10.2967/jnumed.112.104661
49 https://doi.org/10.2967/jnumed.114.147116
50 https://doi.org/10.2967/jnumed.115.154153
51 https://doi.org/10.2967/jnumed.115.154336
52 https://doi.org/10.2967/jnumed.115.160382
53 https://doi.org/10.2967/jnumed.115.161299
54 https://doi.org/10.2967/jnumed.115.163782
55 https://doi.org/10.3322/caac.21208
56 https://doi.org/10.7150/thno.7324
57 schema:datePublished 2016-06
58 schema:datePublishedReg 2016-06-01
59 schema:description PURPOSE: Current standard of care conventional imaging modalities (CIM) such as X-ray computed tomography (CT) and bone scan can be limited for detection of metastatic prostate cancer and therefore improved imaging methods are an unmet clinical need. We evaluated the utility of a novel second-generation low molecular weight radiofluorinated prostate-specific membrane antigen (PSMA)-targeted positron emission tomography (PET) radiotracer, [(18)F]DCFPyL, in patients with metastatic prostate cancer. PROCEDURES: Nine patients with suspected prostate cancer recurrence, eight with CIM evidence of metastatic prostate cancer and one with biochemical recurrence, were imaged with [(18)F]DCFPyL PET/CT. Eight of the patients had contemporaneous CIM for comparison. A lesion-by-lesion comparison of the detection of suspected sites of metastatic prostate cancer was carried out between PET and CIM. Statistical analysis for estimated proportions of inter-modality agreement for detection of metastatic disease was calculated accounting for intra-patient correlation using general estimating equation (GEE) intercept-only regression models. RESULTS: One hundred thirty-nine sites of PET positive [(18)F]DCFPyL uptake (138 definite, 1 equivocal) for metastatic disease were detected in the eight patients with available comparison CIM. By contrast, only 45 lesions were identified on CIM (30 definite, 15 equivocal). When lesions were negative or equivocal on CIM, it was estimated that a large portion of these lesions or 0.72 (95 % confidence interval (CI) 0.55-0.84) would be positive on [(18)F]DCFPyL PET. Conversely, of those lesions negative or equivocal on [(18)F]DCFPyL PET, it was estimated that only a very small proportion or 0.03 (95 % CI 0.01-0.07) would be positive on CIM. Delayed 2-h-post-injection time point PET yielded higher tumor radiotracer uptake and higher tumor-to-background ratios than an earlier 1-h-post-injection time point. CONCLUSIONS: A novel PSMA-targeted PET radiotracer, [(18)F]DCFPyL, was able to a large number of suspected sites of prostate cancer, many of which were occult or equivocal by CIM. This study provides strong preliminary evidence for the use of this second-generation PSMA-targeted PET radiotracer for detection of metastatic prostate cancer and lends further support for the importance of PSMA-targeted PET imaging in prostate cancer.
60 schema:genre research_article
61 schema:inLanguage en
62 schema:isAccessibleForFree true
63 schema:isPartOf N7db8839ca0f0414f8266e54f727a56e9
64 Nb8ea96bb790a43fbafd06556f5e5f1a4
65 sg:journal.1118463
66 schema:name PSMA-Based [18F]DCFPyL PET/CT Is Superior to Conventional Imaging for Lesion Detection in Patients with Metastatic Prostate Cancer
67 schema:pagination 411-419
68 schema:productId N082da49c1b3f4d1ab34b1b31a190c701
69 N178a71049a8b4820a632867970b9a749
70 N6a6700132fb24ce69dea8698a762f243
71 N8ecefdca412d481a8333f2cdeff067c7
72 Ncf6362d077ff43ab8df489aff13da5f8
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011382226
74 https://doi.org/10.1007/s11307-016-0957-6
75 schema:sdDatePublished 2019-04-10T20:49
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher N020aac34af444b06a6336174440bb58e
78 schema:url http://link.springer.com/10.1007%2Fs11307-016-0957-6
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N020aac34af444b06a6336174440bb58e schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 N082da49c1b3f4d1ab34b1b31a190c701 schema:name readcube_id
85 schema:value 363a9b86fb88edf644c7ae32b421d03ed4f30585bc98c19b1374efddbac31999
86 rdf:type schema:PropertyValue
87 N171c006d7c01432db9c97db45e60b191 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Male
89 rdf:type schema:DefinedTerm
90 N178a71049a8b4820a632867970b9a749 schema:name nlm_unique_id
91 schema:value 101125610
92 rdf:type schema:PropertyValue
93 N2c76a80f880f470a87cf093fd602722b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Prostatic Neoplasms
95 rdf:type schema:DefinedTerm
96 N2d55d22807034e2e91a0a0ba28025c6c rdf:first sg:person.01345436437.40
97 rdf:rest N6c3d658cd7784341b05d3defca088d2f
98 N2d6feff5619f41f7bc8ed379cca885b7 rdf:first sg:person.014123762057.20
99 rdf:rest rdf:nil
100 N2f6f6209ad0f4cee842a33da031c1d1e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Positron Emission Tomography Computed Tomography
102 rdf:type schema:DefinedTerm
103 N3e6958a0559e4cf2a5ac304fe4c1bc67 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Regression Analysis
105 rdf:type schema:DefinedTerm
106 N402f91972b7241e69676e7244ca44da9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Humans
108 rdf:type schema:DefinedTerm
109 N4e7721fffe284f4f8005a08ffef483ca rdf:first sg:person.0720454217.63
110 rdf:rest Nffa74fe4367b4c80ba58542dbc205332
111 N52e4b2c5fd10412fb72b5e1704c3cde4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Aged
113 rdf:type schema:DefinedTerm
114 N58fd0c0eb48044d6ba023eb95972b842 rdf:first sg:person.01050245067.85
115 rdf:rest Nd1f21503e81045b3953c2fd33a724a43
116 N5c7ea3b77c6f4e45a0746ab86931712b rdf:first sg:person.01077255525.79
117 rdf:rest Nb6495cdd85d34252a395c1f290a950f3
118 N6a6700132fb24ce69dea8698a762f243 schema:name doi
119 schema:value 10.1007/s11307-016-0957-6
120 rdf:type schema:PropertyValue
121 N6c3d658cd7784341b05d3defca088d2f rdf:first sg:person.01003562505.03
122 rdf:rest Naa37f2e0e2a240c9b8cdb3e924a42aea
123 N6ccc5267f8ed45e3acadf13ec1dbba5b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Whole Body Imaging
125 rdf:type schema:DefinedTerm
126 N7db8839ca0f0414f8266e54f727a56e9 schema:issueNumber 3
127 rdf:type schema:PublicationIssue
128 N7dcf0922b3b24db8b7209235508d46cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Demography
130 rdf:type schema:DefinedTerm
131 N82d6173662574cfeae5a2d34b4dfb28a rdf:first sg:person.01266317743.88
132 rdf:rest Ne33db55e9b654d97b3cdd32afa818074
133 N845e34448c484f8ab8049700872cd09f rdf:first sg:person.0707173104.58
134 rdf:rest N981da12ea98f4ce1ac69727c92449447
135 N8ecefdca412d481a8333f2cdeff067c7 schema:name pubmed_id
136 schema:value 27080322
137 rdf:type schema:PropertyValue
138 N981da12ea98f4ce1ac69727c92449447 rdf:first sg:person.015337602767.70
139 rdf:rest N5c7ea3b77c6f4e45a0746ab86931712b
140 Naa37f2e0e2a240c9b8cdb3e924a42aea rdf:first sg:person.0776732334.49
141 rdf:rest N58fd0c0eb48044d6ba023eb95972b842
142 Nb6495cdd85d34252a395c1f290a950f3 rdf:first sg:person.0620411205.33
143 rdf:rest N2d6feff5619f41f7bc8ed379cca885b7
144 Nb8ea96bb790a43fbafd06556f5e5f1a4 schema:volumeNumber 18
145 rdf:type schema:PublicationVolume
146 Nc0ceb2f447c841849207a9ff86180537 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Prostate-Specific Antigen
148 rdf:type schema:DefinedTerm
149 Ncf6362d077ff43ab8df489aff13da5f8 schema:name dimensions_id
150 schema:value pub.1011382226
151 rdf:type schema:PropertyValue
152 Nd1f21503e81045b3953c2fd33a724a43 rdf:first sg:person.01103756143.16
153 rdf:rest N82d6173662574cfeae5a2d34b4dfb28a
154 Nddd990f8324c4c48ab2e6535e85984b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Urea
156 rdf:type schema:DefinedTerm
157 Ne1e5aa53337d47d4bf9b763ef56fca07 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Lysine
159 rdf:type schema:DefinedTerm
160 Ne2ee10046ad24fd6b9a8641044e83479 rdf:first sg:person.0777134474.36
161 rdf:rest N845e34448c484f8ab8049700872cd09f
162 Ne33db55e9b654d97b3cdd32afa818074 rdf:first sg:person.0740704240.01
163 rdf:rest Ne2ee10046ad24fd6b9a8641044e83479
164 Nea882d25c07f4481b514f3f820558bb1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Aged, 80 and over
166 rdf:type schema:DefinedTerm
167 Ned1eed467b5c4918b9864c7c2e696387 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Middle Aged
169 rdf:type schema:DefinedTerm
170 Nffa74fe4367b4c80ba58542dbc205332 rdf:first sg:person.01065422544.49
171 rdf:rest N2d55d22807034e2e91a0a0ba28025c6c
172 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
173 schema:name Medical and Health Sciences
174 rdf:type schema:DefinedTerm
175 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
176 schema:name Oncology and Carcinogenesis
177 rdf:type schema:DefinedTerm
178 sg:grant.2438791 http://pending.schema.org/fundedItem sg:pub.10.1007/s11307-016-0957-6
179 rdf:type schema:MonetaryGrant
180 sg:grant.2440204 http://pending.schema.org/fundedItem sg:pub.10.1007/s11307-016-0957-6
181 rdf:type schema:MonetaryGrant
182 sg:grant.2479967 http://pending.schema.org/fundedItem sg:pub.10.1007/s11307-016-0957-6
183 rdf:type schema:MonetaryGrant
184 sg:grant.3803645 http://pending.schema.org/fundedItem sg:pub.10.1007/s11307-016-0957-6
185 rdf:type schema:MonetaryGrant
186 sg:grant.4176842 http://pending.schema.org/fundedItem sg:pub.10.1007/s11307-016-0957-6
187 rdf:type schema:MonetaryGrant
188 sg:journal.1118463 schema:issn 1536-1632
189 1878-5751
190 schema:name Molecular Imaging and Biology
191 rdf:type schema:Periodical
192 sg:person.01003562505.03 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
193 schema:familyName Blackford
194 schema:givenName Amanda L.
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003562505.03
196 rdf:type schema:Person
197 sg:person.01050245067.85 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
198 schema:familyName Antonarakis
199 schema:givenName Emmanuel S.
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050245067.85
201 rdf:type schema:Person
202 sg:person.01065422544.49 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
203 schema:familyName Macura
204 schema:givenName Katarzyna J.
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065422544.49
206 rdf:type schema:Person
207 sg:person.01077255525.79 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
208 schema:familyName Szabo
209 schema:givenName Zsolt
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077255525.79
211 rdf:type schema:Person
212 sg:person.01103756143.16 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
213 schema:familyName Eisenberger
214 schema:givenName Mario
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103756143.16
216 rdf:type schema:Person
217 sg:person.01266317743.88 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
218 schema:familyName Carducci
219 schema:givenName Michael
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266317743.88
221 rdf:type schema:Person
222 sg:person.01345436437.40 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
223 schema:familyName Mena
224 schema:givenName Esther
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345436437.40
226 rdf:type schema:Person
227 sg:person.014123762057.20 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
228 schema:familyName Cho
229 schema:givenName Steve Y.
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014123762057.20
231 rdf:type schema:Person
232 sg:person.015337602767.70 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
233 schema:familyName Mease
234 schema:givenName Ronnie C.
235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015337602767.70
236 rdf:type schema:Person
237 sg:person.0620411205.33 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
238 schema:familyName Pomper
239 schema:givenName Martin G.
240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620411205.33
241 rdf:type schema:Person
242 sg:person.0707173104.58 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
243 schema:familyName Chen
244 schema:givenName Ying
245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707173104.58
246 rdf:type schema:Person
247 sg:person.0720454217.63 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
248 schema:familyName Rowe
249 schema:givenName Steven P.
250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720454217.63
251 rdf:type schema:Person
252 sg:person.0740704240.01 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
253 schema:familyName Fan
254 schema:givenName Hong
255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740704240.01
256 rdf:type schema:Person
257 sg:person.0776732334.49 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
258 schema:familyName Nadal
259 schema:givenName Rosa
260 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776732334.49
261 rdf:type schema:Person
262 sg:person.0777134474.36 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
263 schema:familyName Dannals
264 schema:givenName Robert F.
265 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777134474.36
266 rdf:type schema:Person
267 sg:pub.10.1007/s00259-010-1496-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1028870172
268 https://doi.org/10.1007/s00259-010-1496-z
269 rdf:type schema:CreativeWork
270 sg:pub.10.1007/s00259-012-2298-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051179630
271 https://doi.org/10.1007/s00259-012-2298-2
272 rdf:type schema:CreativeWork
273 sg:pub.10.1007/s00259-013-2525-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010481232
274 https://doi.org/10.1007/s00259-013-2525-5
275 rdf:type schema:CreativeWork
276 sg:pub.10.1007/s00259-014-2830-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014523383
277 https://doi.org/10.1007/s00259-014-2830-7
278 rdf:type schema:CreativeWork
279 sg:pub.10.1007/s11307-015-0850-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033167477
280 https://doi.org/10.1007/s11307-015-0850-8
281 rdf:type schema:CreativeWork
282 sg:pub.10.1007/s11307-015-0866-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006839268
283 https://doi.org/10.1007/s11307-015-0866-0
284 rdf:type schema:CreativeWork
285 sg:pub.10.1038/pcan.2011.35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029565878
286 https://doi.org/10.1038/pcan.2011.35
287 rdf:type schema:CreativeWork
288 https://app.dimensions.ai/details/publication/pub.1076617276 schema:CreativeWork
289 https://app.dimensions.ai/details/publication/pub.1077298893 schema:CreativeWork
290 https://app.dimensions.ai/details/publication/pub.1077344489 schema:CreativeWork
291 https://doi.org/10.1002/pros.21065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050465787
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1016/j.apradiso.2012.06.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042939071
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1016/j.ejrad.2010.07.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025167997
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1016/j.eururo.2012.09.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032849052
298 rdf:type schema:CreativeWork
299 https://doi.org/10.1016/j.eururo.2013.04.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010087586
300 rdf:type schema:CreativeWork
301 https://doi.org/10.1016/j.humpath.2006.11.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046722707
302 rdf:type schema:CreativeWork
303 https://doi.org/10.1016/j.juro.2013.10.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009807759
304 rdf:type schema:CreativeWork
305 https://doi.org/10.1016/s0090-4295(96)00184-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049889834
306 rdf:type schema:CreativeWork
307 https://doi.org/10.1016/s0378-1119(02)00397-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013071089
308 rdf:type schema:CreativeWork
309 https://doi.org/10.1021/mp500164r schema:sameAs https://app.dimensions.ai/details/publication/pub.1049803197
310 rdf:type schema:CreativeWork
311 https://doi.org/10.1073/pnas.1106383108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019320835
312 rdf:type schema:CreativeWork
313 https://doi.org/10.1093/biomet/73.1.13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005412165
314 rdf:type schema:CreativeWork
315 https://doi.org/10.1097/rlu.0b013e3182867f3c schema:sameAs https://app.dimensions.ai/details/publication/pub.1043161854
316 rdf:type schema:CreativeWork
317 https://doi.org/10.1111/bju.12279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015021129
318 rdf:type schema:CreativeWork
319 https://doi.org/10.1126/scitranslmed.aaa1009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062688597
320 rdf:type schema:CreativeWork
321 https://doi.org/10.1148/radiol.11102023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023902579
322 rdf:type schema:CreativeWork
323 https://doi.org/10.1158/0008-5472.can-08-2328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010044151
324 rdf:type schema:CreativeWork
325 https://doi.org/10.1158/1078-0432.ccr-11-1357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036262827
326 rdf:type schema:CreativeWork
327 https://doi.org/10.2174/092986712799462612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069162433
328 rdf:type schema:CreativeWork
329 https://doi.org/10.2174/1568026611313080002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069194628
330 rdf:type schema:CreativeWork
331 https://doi.org/10.2967/jnumed.110.077941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045636036
332 rdf:type schema:CreativeWork
333 https://doi.org/10.2967/jnumed.112.104661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017523970
334 rdf:type schema:CreativeWork
335 https://doi.org/10.2967/jnumed.114.147116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029315874
336 rdf:type schema:CreativeWork
337 https://doi.org/10.2967/jnumed.115.154153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030714440
338 rdf:type schema:CreativeWork
339 https://doi.org/10.2967/jnumed.115.154336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022357114
340 rdf:type schema:CreativeWork
341 https://doi.org/10.2967/jnumed.115.160382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043759484
342 rdf:type schema:CreativeWork
343 https://doi.org/10.2967/jnumed.115.161299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019234461
344 rdf:type schema:CreativeWork
345 https://doi.org/10.2967/jnumed.115.163782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012955958
346 rdf:type schema:CreativeWork
347 https://doi.org/10.3322/caac.21208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041182772
348 rdf:type schema:CreativeWork
349 https://doi.org/10.7150/thno.7324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000255885
350 rdf:type schema:CreativeWork
351 https://www.grid.ac/institutes/grid.14003.36 schema:alternateName University of Wisconsin–Madison
352 schema:name Department of Radiology, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR1 Rm 7139, 53593, Madison, WI, USA
353 The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
354 rdf:type schema:Organization
355 https://www.grid.ac/institutes/grid.21107.35 schema:alternateName Johns Hopkins University
356 schema:name Department of Oncology in the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
357 The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
358 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...