Application of Partial Volume Effect Correction and 4D PET in the Quantification of FDG Avid Lung Lesions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-02

AUTHORS

Ali Salavati, Samuel Borofsky, Teo K. Boon-Keng, Sina Houshmand, Benjapa Khiewvan, Babak Saboury, Ion Codreanu, Drew A. Torigian, Habib Zaidi, Abass Alavi

ABSTRACT

PURPOSE: The aim of this study is to assess a software-based method with semiautomated correction for partial volume effect (PVE) to quantify the metabolic activity of pulmonary malignancies in patients who underwent non-gated and respiratory-gated 2-deoxy-2-[(18)F]fluoro-D-glucose (FDG)-positron emission tomography (PET)/x-ray computed tomography(CT). PROCEDURES: The study included 106 lesions of 55 lung cancer patients who underwent respiratory-gated FDG-PET/CT for radiation therapy treatment planning. Volumetric PET/CT parameters were determined by using 4D PET/CT and non-gated PET/CT images. We used a semiautomated program employing an adaptive contrast-oriented thresholding algorithm for lesion delineation as well as a lesion-based partial volume effect correction algorithm. We compared respiratory-gated parameters with non-gated parameters by using pairwise comparison and interclass correlation coefficient assessment. In a multivariable regression analysis, we also examined factors, which can affect quantification accuracy, including the size of lesion and the location of tumor. RESULTS: This study showed that quantification of volumetric parameters of 4D PET/CT images using an adaptive contrast-oriented thresholding algorithm and 3D lesion-based partial volume correction is feasible. We observed slight increase in FDG uptake by using PET/CT volumetric parameters in comparison of highest respiratory-gated values with non-gated values. After correction for partial volume effect, the mean standardized uptake value (SUVmean) and total lesion glycolysis (TLG) increased substantially (p value <0.001). However, we did not observe a clinically significant difference between partial volume corrected parameters of respiratory-gated and non-gated PET/CT scans. Regression analysis showed that tumor volume was the main predictor of quantification inaccuracy caused by partial volume effect. CONCLUSIONS: Based on this study, assessment of volumetric PET/CT parameters and partial volume effect correction for accurate quantification of lung malignant lesions by using respiratory non-gated PET images are feasible and it is comparable to gated measurements. Partial volume correction increased both the respiratory-gated and non-gated values significantly and appears to be the dominant source of quantification error of lung lesions. More... »

PAGES

140-148

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11307-014-0776-6

DOI

http://dx.doi.org/10.1007/s11307-014-0776-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005950127

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25080325


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Automation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contrast Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorodeoxyglucose F18", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lung", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lung Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Motion", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multimodal Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multivariate Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Positron-Emission Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiopharmaceuticals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Regression Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Respiration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Whole Body Imaging", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hospital of the University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.411115.1", 
          "name": [
            "Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Salavati", 
        "givenName": "Ali", 
        "id": "sg:person.0774653204.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774653204.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital of the University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.411115.1", 
          "name": [
            "Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Borofsky", 
        "givenName": "Samuel", 
        "id": "sg:person.01355106402.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355106402.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital of the University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.411115.1", 
          "name": [
            "Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boon-Keng", 
        "givenName": "Teo K.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital of the University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.411115.1", 
          "name": [
            "Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Houshmand", 
        "givenName": "Sina", 
        "id": "sg:person.01044605774.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044605774.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital of the University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.411115.1", 
          "name": [
            "Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khiewvan", 
        "givenName": "Benjapa", 
        "id": "sg:person.01276554062.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276554062.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital of the University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.411115.1", 
          "name": [
            "Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saboury", 
        "givenName": "Babak", 
        "id": "sg:person.01042766404.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042766404.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital of the University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.411115.1", 
          "name": [
            "Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Codreanu", 
        "givenName": "Ion", 
        "id": "sg:person.0761176705.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761176705.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital of the University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.411115.1", 
          "name": [
            "Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Torigian", 
        "givenName": "Drew A.", 
        "id": "sg:person.01026611221.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026611221.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Geneva", 
          "id": "https://www.grid.ac/institutes/grid.8591.5", 
          "name": [
            "Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland", 
            "Geneva Neuroscience Center, Geneva University, CH-1211, Geneva, Switzerland", 
            "Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9700 RB, Groningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zaidi", 
        "givenName": "Habib", 
        "id": "sg:person.01300453230.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300453230.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital of the University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.411115.1", 
          "name": [
            "Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alavi", 
        "givenName": "Abass", 
        "id": "sg:person.013064447257.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013064447257.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1118/1.3112422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000568645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.semnuclmed.2008.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000754835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.111.093443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002236986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00395-008-0717-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002871231", 
          "https://doi.org/10.1007/s00395-008-0717-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00395-008-0717-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002871231", 
          "https://doi.org/10.1007/s00395-008-0717-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.106.035774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005435708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.2192581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005528187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-002-0924-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012723639", 
          "https://doi.org/10.1007/s00259-002-0924-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.4766876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013766657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12149-008-0225-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013779505", 
          "https://doi.org/10.1007/s12149-008-0225-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-013-2625-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019034498", 
          "https://doi.org/10.1007/s00259-013-2625-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-013-2407-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020424181", 
          "https://doi.org/10.1007/s00259-013-2407-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cpet.2007.10.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022473250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.3160108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022954868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mnm.0000000000000048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024626081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mnm.0000000000000048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024626081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mnm.0b013e32831af204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024728759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mnm.0b013e32831af204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024728759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.3512780", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025260241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/snuc.2003.127313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034167044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/snuc.2003.127313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034167044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.107.049296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034962756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.113.130138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036012979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.108.050401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037285767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.semnuclmed.2007.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038419506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.1809778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038821018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(86)90837-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040287180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(86)90837-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040287180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.3480508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040437380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-013-2579-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043290425", 
          "https://doi.org/10.1007/s00259-013-2579-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0006-341x.2002.01020.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043529473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.meddos.2005.12.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045263377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0958-3947(02)00136-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045600171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0958-3947(02)00136-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045600171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.3483784", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047405637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-008-0931-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048275554", 
          "https://doi.org/10.1007/s00259-008-0931-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-008-0931-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048275554", 
          "https://doi.org/10.1007/s00259-008-0931-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2010.12.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048321974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.109.068759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049790673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2191-219x-2-16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050768136", 
          "https://doi.org/10.1186/2191-219x-2-16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-010-1423-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052969468", 
          "https://doi.org/10.1007/s00259-010-1423-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-010-1423-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052969468", 
          "https://doi.org/10.1007/s00259-010-1423-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2006.870892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061694834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2532051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069977481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7326/0003-4819-139-11-200311180-00013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073706357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075081052", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076875870", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077344485", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.2007.4353254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077517472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02841850802627437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077825582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02841850802627437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077825582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078386463", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-02", 
    "datePublishedReg": "2015-02-01", 
    "description": "PURPOSE: The aim of this study is to assess a software-based method with semiautomated correction for partial volume effect (PVE) to quantify the metabolic activity of pulmonary malignancies in patients who underwent non-gated and respiratory-gated 2-deoxy-2-[(18)F]fluoro-D-glucose (FDG)-positron emission tomography (PET)/x-ray computed tomography(CT).\nPROCEDURES: The study included 106 lesions of 55 lung cancer patients who underwent respiratory-gated FDG-PET/CT for radiation therapy treatment planning. Volumetric PET/CT parameters were determined by using 4D PET/CT and non-gated PET/CT images. We used a semiautomated program employing an adaptive contrast-oriented thresholding algorithm for lesion delineation as well as a lesion-based partial volume effect correction algorithm. We compared respiratory-gated parameters with non-gated parameters by using pairwise comparison and interclass correlation coefficient assessment. In a multivariable regression analysis, we also examined factors, which can affect quantification accuracy, including the size of lesion and the location of tumor.\nRESULTS: This study showed that quantification of volumetric parameters of 4D PET/CT images using an adaptive contrast-oriented thresholding algorithm and 3D lesion-based partial volume correction is feasible. We observed slight increase in FDG uptake by using PET/CT volumetric parameters in comparison of highest respiratory-gated values with non-gated values. After correction for partial volume effect, the mean standardized uptake value (SUVmean) and total lesion glycolysis (TLG) increased substantially (p value <0.001). However, we did not observe a clinically significant difference between partial volume corrected parameters of respiratory-gated and non-gated PET/CT scans. Regression analysis showed that tumor volume was the main predictor of quantification inaccuracy caused by partial volume effect.\nCONCLUSIONS: Based on this study, assessment of volumetric PET/CT parameters and partial volume effect correction for accurate quantification of lung malignant lesions by using respiratory non-gated PET images are feasible and it is comparable to gated measurements. Partial volume correction increased both the respiratory-gated and non-gated values significantly and appears to be the dominant source of quantification error of lung lesions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11307-014-0776-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1118463", 
        "issn": [
          "1536-1632", 
          "1878-5751"
        ], 
        "name": "Molecular Imaging and Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "Application of Partial Volume Effect Correction and 4D PET in the Quantification of FDG Avid Lung Lesions", 
    "pagination": "140-148", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1c580e6c2385de6acb678f43c8f1789625f1be62ad9e9b9459407b94b622eb60"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25080325"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101125610"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11307-014-0776-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005950127"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11307-014-0776-6", 
      "https://app.dimensions.ai/details/publication/pub.1005950127"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000520.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11307-014-0776-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11307-014-0776-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11307-014-0776-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11307-014-0776-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11307-014-0776-6'


 

This table displays all metadata directly associated to this object as RDF triples.

359 TRIPLES      21 PREDICATES      94 URIs      43 LITERALS      31 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11307-014-0776-6 schema:about N1f6a815605eb4e54aa078857cecb143d
2 N2debdb9d78d74ef8934ec0b5a7fde38e
3 N2eff01bb9cc345d791c2d5794fa4e7e8
4 N3788d294706d4ff193586ff89cefcda3
5 N47f7c8c20208417b98d9381c22ed6fed
6 N4c97e33893ce45d19eb68b829728a9c8
7 N52a01b4b8780423684672503be96e962
8 N58929d73b2e742b4902c4bdd31bf3385
9 N6ff44c87352d474a84d8731638d32a07
10 N866a02e22fe944088af35e4525cbd4a0
11 N9151c2dbba7846abbc2ef97c4bc3e535
12 N95113d5e65fc4df388a3abff011670b5
13 N9e81256a091447f6b3b26810ed7deab2
14 Nbe1cb8e7c99c476e821918f08c3e77f5
15 Nbe292062423b4ab09064af4fd3fe0a4a
16 Nbed6d92a268841dcb512dae3768b63cd
17 Nea09ddcd92424cf1bd77db45a1349bb7
18 Nea52c408c1614546993939c3b257f84d
19 Nea5a29d14faa41efaa67e742f1b642ed
20 Nef17156ece5e418fa4fdf443ef8dd5ad
21 Nf31d9f6c16dd40e39604ea0ac99744a7
22 Nff3f83faf385431d8470ed022e5ae943
23 anzsrc-for:08
24 anzsrc-for:0801
25 schema:author N8fd819b49a4a42a5866a775f29b931b7
26 schema:citation sg:pub.10.1007/s00259-002-0924-0
27 sg:pub.10.1007/s00259-008-0931-x
28 sg:pub.10.1007/s00259-010-1423-3
29 sg:pub.10.1007/s00259-013-2407-x
30 sg:pub.10.1007/s00259-013-2579-4
31 sg:pub.10.1007/s00259-013-2625-2
32 sg:pub.10.1007/s00395-008-0717-0
33 sg:pub.10.1007/s12149-008-0225-1
34 sg:pub.10.1186/2191-219x-2-16
35 https://app.dimensions.ai/details/publication/pub.1075081052
36 https://app.dimensions.ai/details/publication/pub.1076875870
37 https://app.dimensions.ai/details/publication/pub.1077344485
38 https://app.dimensions.ai/details/publication/pub.1078386463
39 https://doi.org/10.1016/j.cpet.2007.10.005
40 https://doi.org/10.1016/j.ijrobp.2010.12.060
41 https://doi.org/10.1016/j.meddos.2005.12.005
42 https://doi.org/10.1016/s0140-6736(86)90837-8
43 https://doi.org/10.1016/s0958-3947(02)00136-x
44 https://doi.org/10.1053/j.semnuclmed.2007.01.005
45 https://doi.org/10.1053/j.semnuclmed.2008.01.002
46 https://doi.org/10.1053/snuc.2003.127313
47 https://doi.org/10.1080/02841850802627437
48 https://doi.org/10.1097/mnm.0000000000000048
49 https://doi.org/10.1097/mnm.0b013e32831af204
50 https://doi.org/10.1109/iembs.2007.4353254
51 https://doi.org/10.1109/tmi.2006.870892
52 https://doi.org/10.1111/j.0006-341x.2002.01020.x
53 https://doi.org/10.1118/1.1809778
54 https://doi.org/10.1118/1.2192581
55 https://doi.org/10.1118/1.3112422
56 https://doi.org/10.1118/1.3160108
57 https://doi.org/10.1118/1.3480508
58 https://doi.org/10.1118/1.3483784
59 https://doi.org/10.1118/1.3512780
60 https://doi.org/10.1118/1.4766876
61 https://doi.org/10.2307/2532051
62 https://doi.org/10.2967/jnumed.106.035774
63 https://doi.org/10.2967/jnumed.107.049296
64 https://doi.org/10.2967/jnumed.108.050401
65 https://doi.org/10.2967/jnumed.109.068759
66 https://doi.org/10.2967/jnumed.111.093443
67 https://doi.org/10.2967/jnumed.113.130138
68 https://doi.org/10.7326/0003-4819-139-11-200311180-00013
69 schema:datePublished 2015-02
70 schema:datePublishedReg 2015-02-01
71 schema:description PURPOSE: The aim of this study is to assess a software-based method with semiautomated correction for partial volume effect (PVE) to quantify the metabolic activity of pulmonary malignancies in patients who underwent non-gated and respiratory-gated 2-deoxy-2-[(18)F]fluoro-D-glucose (FDG)-positron emission tomography (PET)/x-ray computed tomography(CT). PROCEDURES: The study included 106 lesions of 55 lung cancer patients who underwent respiratory-gated FDG-PET/CT for radiation therapy treatment planning. Volumetric PET/CT parameters were determined by using 4D PET/CT and non-gated PET/CT images. We used a semiautomated program employing an adaptive contrast-oriented thresholding algorithm for lesion delineation as well as a lesion-based partial volume effect correction algorithm. We compared respiratory-gated parameters with non-gated parameters by using pairwise comparison and interclass correlation coefficient assessment. In a multivariable regression analysis, we also examined factors, which can affect quantification accuracy, including the size of lesion and the location of tumor. RESULTS: This study showed that quantification of volumetric parameters of 4D PET/CT images using an adaptive contrast-oriented thresholding algorithm and 3D lesion-based partial volume correction is feasible. We observed slight increase in FDG uptake by using PET/CT volumetric parameters in comparison of highest respiratory-gated values with non-gated values. After correction for partial volume effect, the mean standardized uptake value (SUVmean) and total lesion glycolysis (TLG) increased substantially (p value <0.001). However, we did not observe a clinically significant difference between partial volume corrected parameters of respiratory-gated and non-gated PET/CT scans. Regression analysis showed that tumor volume was the main predictor of quantification inaccuracy caused by partial volume effect. CONCLUSIONS: Based on this study, assessment of volumetric PET/CT parameters and partial volume effect correction for accurate quantification of lung malignant lesions by using respiratory non-gated PET images are feasible and it is comparable to gated measurements. Partial volume correction increased both the respiratory-gated and non-gated values significantly and appears to be the dominant source of quantification error of lung lesions.
72 schema:genre research_article
73 schema:inLanguage en
74 schema:isAccessibleForFree true
75 schema:isPartOf N83136ffc5e4f487fb5a199e325fb0f0e
76 Nb83fdd9b1b164a18b1b05b00b44d817b
77 sg:journal.1118463
78 schema:name Application of Partial Volume Effect Correction and 4D PET in the Quantification of FDG Avid Lung Lesions
79 schema:pagination 140-148
80 schema:productId N05949525f9ee4e648b3790a8087bd4cc
81 N192d045a0cde44c383e6f8c5920008b1
82 N5000698492c24f479d958c30be74c546
83 Nc1fa20c402aa415cb7520f0d6c60303a
84 Nca5e87f54ab1445bb003cb40241b4fc1
85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005950127
86 https://doi.org/10.1007/s11307-014-0776-6
87 schema:sdDatePublished 2019-04-10T21:38
88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
89 schema:sdPublisher Nd1724e2f5bc14a7298a9a15c45f375fe
90 schema:url http://link.springer.com/10.1007%2Fs11307-014-0776-6
91 sgo:license sg:explorer/license/
92 sgo:sdDataset articles
93 rdf:type schema:ScholarlyArticle
94 N05949525f9ee4e648b3790a8087bd4cc schema:name doi
95 schema:value 10.1007/s11307-014-0776-6
96 rdf:type schema:PropertyValue
97 N12a0bb454fef45d28958040140ac41a3 rdf:first sg:person.0761176705.59
98 rdf:rest Nfed53d6a09a5447cb49cc21138240fb8
99 N192d045a0cde44c383e6f8c5920008b1 schema:name readcube_id
100 schema:value 1c580e6c2385de6acb678f43c8f1789625f1be62ad9e9b9459407b94b622eb60
101 rdf:type schema:PropertyValue
102 N1f6a815605eb4e54aa078857cecb143d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Positron-Emission Tomography
104 rdf:type schema:DefinedTerm
105 N25f4973d33e74158916efe0756e46167 rdf:first sg:person.01044605774.07
106 rdf:rest Ne2c8e4a21fad47f99823f17116d5f8fe
107 N2debdb9d78d74ef8934ec0b5a7fde38e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Contrast Media
109 rdf:type schema:DefinedTerm
110 N2eff01bb9cc345d791c2d5794fa4e7e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Regression Analysis
112 rdf:type schema:DefinedTerm
113 N2fd2c318ddd44c01bbdfe26bc8f62da1 rdf:first Nfa412f1f8e2743fa9b5425830e96871b
114 rdf:rest N25f4973d33e74158916efe0756e46167
115 N3788d294706d4ff193586ff89cefcda3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Motion
117 rdf:type schema:DefinedTerm
118 N47f7c8c20208417b98d9381c22ed6fed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Radiopharmaceuticals
120 rdf:type schema:DefinedTerm
121 N4c97e33893ce45d19eb68b829728a9c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Whole Body Imaging
123 rdf:type schema:DefinedTerm
124 N5000698492c24f479d958c30be74c546 schema:name pubmed_id
125 schema:value 25080325
126 rdf:type schema:PropertyValue
127 N52a01b4b8780423684672503be96e962 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Automation
129 rdf:type schema:DefinedTerm
130 N58929d73b2e742b4902c4bdd31bf3385 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Fluorodeoxyglucose F18
132 rdf:type schema:DefinedTerm
133 N6ff44c87352d474a84d8731638d32a07 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Female
135 rdf:type schema:DefinedTerm
136 N83136ffc5e4f487fb5a199e325fb0f0e schema:issueNumber 1
137 rdf:type schema:PublicationIssue
138 N8535e0fcc6954bc885ad726a811afaa3 rdf:first sg:person.01300453230.34
139 rdf:rest Ne19b5691979c43d687cfb1b60c36fdf8
140 N866a02e22fe944088af35e4525cbd4a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Aged
142 rdf:type schema:DefinedTerm
143 N8fd819b49a4a42a5866a775f29b931b7 rdf:first sg:person.0774653204.10
144 rdf:rest Nfd4bd7a8ab4141afaf820780478fd5a1
145 N9151c2dbba7846abbc2ef97c4bc3e535 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Respiration
147 rdf:type schema:DefinedTerm
148 N95113d5e65fc4df388a3abff011670b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Multivariate Analysis
150 rdf:type schema:DefinedTerm
151 N9e81256a091447f6b3b26810ed7deab2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Image Processing, Computer-Assisted
153 rdf:type schema:DefinedTerm
154 Nb14a81d799574cea859d3177d9871228 rdf:first sg:person.01042766404.29
155 rdf:rest N12a0bb454fef45d28958040140ac41a3
156 Nb83fdd9b1b164a18b1b05b00b44d817b schema:volumeNumber 17
157 rdf:type schema:PublicationVolume
158 Nbe1cb8e7c99c476e821918f08c3e77f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Male
160 rdf:type schema:DefinedTerm
161 Nbe292062423b4ab09064af4fd3fe0a4a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Humans
163 rdf:type schema:DefinedTerm
164 Nbed6d92a268841dcb512dae3768b63cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Reproducibility of Results
166 rdf:type schema:DefinedTerm
167 Nc1fa20c402aa415cb7520f0d6c60303a schema:name nlm_unique_id
168 schema:value 101125610
169 rdf:type schema:PropertyValue
170 Nca5e87f54ab1445bb003cb40241b4fc1 schema:name dimensions_id
171 schema:value pub.1005950127
172 rdf:type schema:PropertyValue
173 Nd1724e2f5bc14a7298a9a15c45f375fe schema:name Springer Nature - SN SciGraph project
174 rdf:type schema:Organization
175 Ne19b5691979c43d687cfb1b60c36fdf8 rdf:first sg:person.013064447257.07
176 rdf:rest rdf:nil
177 Ne2c8e4a21fad47f99823f17116d5f8fe rdf:first sg:person.01276554062.91
178 rdf:rest Nb14a81d799574cea859d3177d9871228
179 Nea09ddcd92424cf1bd77db45a1349bb7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Multimodal Imaging
181 rdf:type schema:DefinedTerm
182 Nea52c408c1614546993939c3b257f84d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Tomography, X-Ray Computed
184 rdf:type schema:DefinedTerm
185 Nea5a29d14faa41efaa67e742f1b642ed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
186 schema:name Lung Neoplasms
187 rdf:type schema:DefinedTerm
188 Nef17156ece5e418fa4fdf443ef8dd5ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Lung
190 rdf:type schema:DefinedTerm
191 Nf31d9f6c16dd40e39604ea0ac99744a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Algorithms
193 rdf:type schema:DefinedTerm
194 Nfa412f1f8e2743fa9b5425830e96871b schema:affiliation https://www.grid.ac/institutes/grid.411115.1
195 schema:familyName Boon-Keng
196 schema:givenName Teo K.
197 rdf:type schema:Person
198 Nfd4bd7a8ab4141afaf820780478fd5a1 rdf:first sg:person.01355106402.62
199 rdf:rest N2fd2c318ddd44c01bbdfe26bc8f62da1
200 Nfed53d6a09a5447cb49cc21138240fb8 rdf:first sg:person.01026611221.88
201 rdf:rest N8535e0fcc6954bc885ad726a811afaa3
202 Nff3f83faf385431d8470ed022e5ae943 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
203 schema:name Middle Aged
204 rdf:type schema:DefinedTerm
205 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
206 schema:name Information and Computing Sciences
207 rdf:type schema:DefinedTerm
208 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
209 schema:name Artificial Intelligence and Image Processing
210 rdf:type schema:DefinedTerm
211 sg:journal.1118463 schema:issn 1536-1632
212 1878-5751
213 schema:name Molecular Imaging and Biology
214 rdf:type schema:Periodical
215 sg:person.01026611221.88 schema:affiliation https://www.grid.ac/institutes/grid.411115.1
216 schema:familyName Torigian
217 schema:givenName Drew A.
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026611221.88
219 rdf:type schema:Person
220 sg:person.01042766404.29 schema:affiliation https://www.grid.ac/institutes/grid.411115.1
221 schema:familyName Saboury
222 schema:givenName Babak
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042766404.29
224 rdf:type schema:Person
225 sg:person.01044605774.07 schema:affiliation https://www.grid.ac/institutes/grid.411115.1
226 schema:familyName Houshmand
227 schema:givenName Sina
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044605774.07
229 rdf:type schema:Person
230 sg:person.01276554062.91 schema:affiliation https://www.grid.ac/institutes/grid.411115.1
231 schema:familyName Khiewvan
232 schema:givenName Benjapa
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276554062.91
234 rdf:type schema:Person
235 sg:person.01300453230.34 schema:affiliation https://www.grid.ac/institutes/grid.8591.5
236 schema:familyName Zaidi
237 schema:givenName Habib
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300453230.34
239 rdf:type schema:Person
240 sg:person.013064447257.07 schema:affiliation https://www.grid.ac/institutes/grid.411115.1
241 schema:familyName Alavi
242 schema:givenName Abass
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013064447257.07
244 rdf:type schema:Person
245 sg:person.01355106402.62 schema:affiliation https://www.grid.ac/institutes/grid.411115.1
246 schema:familyName Borofsky
247 schema:givenName Samuel
248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355106402.62
249 rdf:type schema:Person
250 sg:person.0761176705.59 schema:affiliation https://www.grid.ac/institutes/grid.411115.1
251 schema:familyName Codreanu
252 schema:givenName Ion
253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761176705.59
254 rdf:type schema:Person
255 sg:person.0774653204.10 schema:affiliation https://www.grid.ac/institutes/grid.411115.1
256 schema:familyName Salavati
257 schema:givenName Ali
258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774653204.10
259 rdf:type schema:Person
260 sg:pub.10.1007/s00259-002-0924-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012723639
261 https://doi.org/10.1007/s00259-002-0924-0
262 rdf:type schema:CreativeWork
263 sg:pub.10.1007/s00259-008-0931-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048275554
264 https://doi.org/10.1007/s00259-008-0931-x
265 rdf:type schema:CreativeWork
266 sg:pub.10.1007/s00259-010-1423-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052969468
267 https://doi.org/10.1007/s00259-010-1423-3
268 rdf:type schema:CreativeWork
269 sg:pub.10.1007/s00259-013-2407-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020424181
270 https://doi.org/10.1007/s00259-013-2407-x
271 rdf:type schema:CreativeWork
272 sg:pub.10.1007/s00259-013-2579-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043290425
273 https://doi.org/10.1007/s00259-013-2579-4
274 rdf:type schema:CreativeWork
275 sg:pub.10.1007/s00259-013-2625-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019034498
276 https://doi.org/10.1007/s00259-013-2625-2
277 rdf:type schema:CreativeWork
278 sg:pub.10.1007/s00395-008-0717-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002871231
279 https://doi.org/10.1007/s00395-008-0717-0
280 rdf:type schema:CreativeWork
281 sg:pub.10.1007/s12149-008-0225-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013779505
282 https://doi.org/10.1007/s12149-008-0225-1
283 rdf:type schema:CreativeWork
284 sg:pub.10.1186/2191-219x-2-16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050768136
285 https://doi.org/10.1186/2191-219x-2-16
286 rdf:type schema:CreativeWork
287 https://app.dimensions.ai/details/publication/pub.1075081052 schema:CreativeWork
288 https://app.dimensions.ai/details/publication/pub.1076875870 schema:CreativeWork
289 https://app.dimensions.ai/details/publication/pub.1077344485 schema:CreativeWork
290 https://app.dimensions.ai/details/publication/pub.1078386463 schema:CreativeWork
291 https://doi.org/10.1016/j.cpet.2007.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022473250
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1016/j.ijrobp.2010.12.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048321974
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1016/j.meddos.2005.12.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045263377
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1016/s0140-6736(86)90837-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040287180
298 rdf:type schema:CreativeWork
299 https://doi.org/10.1016/s0958-3947(02)00136-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045600171
300 rdf:type schema:CreativeWork
301 https://doi.org/10.1053/j.semnuclmed.2007.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038419506
302 rdf:type schema:CreativeWork
303 https://doi.org/10.1053/j.semnuclmed.2008.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000754835
304 rdf:type schema:CreativeWork
305 https://doi.org/10.1053/snuc.2003.127313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034167044
306 rdf:type schema:CreativeWork
307 https://doi.org/10.1080/02841850802627437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077825582
308 rdf:type schema:CreativeWork
309 https://doi.org/10.1097/mnm.0000000000000048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024626081
310 rdf:type schema:CreativeWork
311 https://doi.org/10.1097/mnm.0b013e32831af204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024728759
312 rdf:type schema:CreativeWork
313 https://doi.org/10.1109/iembs.2007.4353254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077517472
314 rdf:type schema:CreativeWork
315 https://doi.org/10.1109/tmi.2006.870892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694834
316 rdf:type schema:CreativeWork
317 https://doi.org/10.1111/j.0006-341x.2002.01020.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043529473
318 rdf:type schema:CreativeWork
319 https://doi.org/10.1118/1.1809778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038821018
320 rdf:type schema:CreativeWork
321 https://doi.org/10.1118/1.2192581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005528187
322 rdf:type schema:CreativeWork
323 https://doi.org/10.1118/1.3112422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000568645
324 rdf:type schema:CreativeWork
325 https://doi.org/10.1118/1.3160108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022954868
326 rdf:type schema:CreativeWork
327 https://doi.org/10.1118/1.3480508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040437380
328 rdf:type schema:CreativeWork
329 https://doi.org/10.1118/1.3483784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047405637
330 rdf:type schema:CreativeWork
331 https://doi.org/10.1118/1.3512780 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025260241
332 rdf:type schema:CreativeWork
333 https://doi.org/10.1118/1.4766876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013766657
334 rdf:type schema:CreativeWork
335 https://doi.org/10.2307/2532051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069977481
336 rdf:type schema:CreativeWork
337 https://doi.org/10.2967/jnumed.106.035774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005435708
338 rdf:type schema:CreativeWork
339 https://doi.org/10.2967/jnumed.107.049296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034962756
340 rdf:type schema:CreativeWork
341 https://doi.org/10.2967/jnumed.108.050401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037285767
342 rdf:type schema:CreativeWork
343 https://doi.org/10.2967/jnumed.109.068759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049790673
344 rdf:type schema:CreativeWork
345 https://doi.org/10.2967/jnumed.111.093443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002236986
346 rdf:type schema:CreativeWork
347 https://doi.org/10.2967/jnumed.113.130138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036012979
348 rdf:type schema:CreativeWork
349 https://doi.org/10.7326/0003-4819-139-11-200311180-00013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073706357
350 rdf:type schema:CreativeWork
351 https://www.grid.ac/institutes/grid.411115.1 schema:alternateName Hospital of the University of Pennsylvania
352 schema:name Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
353 Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, USA
354 rdf:type schema:Organization
355 https://www.grid.ac/institutes/grid.8591.5 schema:alternateName University of Geneva
356 schema:name Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9700 RB, Groningen, The Netherlands
357 Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland
358 Geneva Neuroscience Center, Geneva University, CH-1211, Geneva, Switzerland
359 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...