Application of Partial Volume Effect Correction and 4D PET in the Quantification of FDG Avid Lung Lesions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-02

AUTHORS

Ali Salavati, Samuel Borofsky, Teo K. Boon-Keng, Sina Houshmand, Benjapa Khiewvan, Babak Saboury, Ion Codreanu, Drew A. Torigian, Habib Zaidi, Abass Alavi

ABSTRACT

PURPOSE: The aim of this study is to assess a software-based method with semiautomated correction for partial volume effect (PVE) to quantify the metabolic activity of pulmonary malignancies in patients who underwent non-gated and respiratory-gated 2-deoxy-2-[(18)F]fluoro-D-glucose (FDG)-positron emission tomography (PET)/x-ray computed tomography(CT). PROCEDURES: The study included 106 lesions of 55 lung cancer patients who underwent respiratory-gated FDG-PET/CT for radiation therapy treatment planning. Volumetric PET/CT parameters were determined by using 4D PET/CT and non-gated PET/CT images. We used a semiautomated program employing an adaptive contrast-oriented thresholding algorithm for lesion delineation as well as a lesion-based partial volume effect correction algorithm. We compared respiratory-gated parameters with non-gated parameters by using pairwise comparison and interclass correlation coefficient assessment. In a multivariable regression analysis, we also examined factors, which can affect quantification accuracy, including the size of lesion and the location of tumor. RESULTS: This study showed that quantification of volumetric parameters of 4D PET/CT images using an adaptive contrast-oriented thresholding algorithm and 3D lesion-based partial volume correction is feasible. We observed slight increase in FDG uptake by using PET/CT volumetric parameters in comparison of highest respiratory-gated values with non-gated values. After correction for partial volume effect, the mean standardized uptake value (SUVmean) and total lesion glycolysis (TLG) increased substantially (p value <0.001). However, we did not observe a clinically significant difference between partial volume corrected parameters of respiratory-gated and non-gated PET/CT scans. Regression analysis showed that tumor volume was the main predictor of quantification inaccuracy caused by partial volume effect. CONCLUSIONS: Based on this study, assessment of volumetric PET/CT parameters and partial volume effect correction for accurate quantification of lung malignant lesions by using respiratory non-gated PET images are feasible and it is comparable to gated measurements. Partial volume correction increased both the respiratory-gated and non-gated values significantly and appears to be the dominant source of quantification error of lung lesions. More... »

PAGES

140-148

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11307-014-0776-6

DOI

http://dx.doi.org/10.1007/s11307-014-0776-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005950127

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25080325


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Automation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contrast Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorodeoxyglucose F18", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lung", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lung Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Motion", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multimodal Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multivariate Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Positron-Emission Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiopharmaceuticals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Regression Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Respiration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Whole Body Imaging", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hospital of the University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.411115.1", 
          "name": [
            "Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Salavati", 
        "givenName": "Ali", 
        "id": "sg:person.0774653204.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774653204.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital of the University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.411115.1", 
          "name": [
            "Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Borofsky", 
        "givenName": "Samuel", 
        "id": "sg:person.01355106402.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355106402.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital of the University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.411115.1", 
          "name": [
            "Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boon-Keng", 
        "givenName": "Teo K.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital of the University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.411115.1", 
          "name": [
            "Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Houshmand", 
        "givenName": "Sina", 
        "id": "sg:person.01044605774.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044605774.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital of the University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.411115.1", 
          "name": [
            "Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khiewvan", 
        "givenName": "Benjapa", 
        "id": "sg:person.01276554062.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276554062.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital of the University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.411115.1", 
          "name": [
            "Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saboury", 
        "givenName": "Babak", 
        "id": "sg:person.01042766404.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042766404.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital of the University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.411115.1", 
          "name": [
            "Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Codreanu", 
        "givenName": "Ion", 
        "id": "sg:person.0761176705.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761176705.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital of the University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.411115.1", 
          "name": [
            "Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Torigian", 
        "givenName": "Drew A.", 
        "id": "sg:person.01026611221.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026611221.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Geneva", 
          "id": "https://www.grid.ac/institutes/grid.8591.5", 
          "name": [
            "Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland", 
            "Geneva Neuroscience Center, Geneva University, CH-1211, Geneva, Switzerland", 
            "Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9700 RB, Groningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zaidi", 
        "givenName": "Habib", 
        "id": "sg:person.01300453230.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300453230.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital of the University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.411115.1", 
          "name": [
            "Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alavi", 
        "givenName": "Abass", 
        "id": "sg:person.013064447257.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013064447257.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1118/1.3112422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000568645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.semnuclmed.2008.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000754835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.111.093443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002236986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00395-008-0717-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002871231", 
          "https://doi.org/10.1007/s00395-008-0717-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00395-008-0717-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002871231", 
          "https://doi.org/10.1007/s00395-008-0717-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.106.035774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005435708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.2192581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005528187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-002-0924-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012723639", 
          "https://doi.org/10.1007/s00259-002-0924-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.4766876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013766657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12149-008-0225-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013779505", 
          "https://doi.org/10.1007/s12149-008-0225-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-013-2625-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019034498", 
          "https://doi.org/10.1007/s00259-013-2625-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-013-2407-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020424181", 
          "https://doi.org/10.1007/s00259-013-2407-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cpet.2007.10.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022473250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.3160108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022954868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mnm.0000000000000048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024626081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mnm.0000000000000048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024626081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mnm.0b013e32831af204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024728759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mnm.0b013e32831af204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024728759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.3512780", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025260241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/snuc.2003.127313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034167044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/snuc.2003.127313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034167044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.107.049296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034962756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.113.130138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036012979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.108.050401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037285767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.semnuclmed.2007.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038419506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.1809778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038821018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(86)90837-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040287180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(86)90837-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040287180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.3480508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040437380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-013-2579-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043290425", 
          "https://doi.org/10.1007/s00259-013-2579-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0006-341x.2002.01020.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043529473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.meddos.2005.12.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045263377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0958-3947(02)00136-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045600171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0958-3947(02)00136-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045600171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.3483784", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047405637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-008-0931-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048275554", 
          "https://doi.org/10.1007/s00259-008-0931-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-008-0931-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048275554", 
          "https://doi.org/10.1007/s00259-008-0931-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2010.12.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048321974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.109.068759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049790673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2191-219x-2-16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050768136", 
          "https://doi.org/10.1186/2191-219x-2-16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-010-1423-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052969468", 
          "https://doi.org/10.1007/s00259-010-1423-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-010-1423-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052969468", 
          "https://doi.org/10.1007/s00259-010-1423-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2006.870892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061694834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2532051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069977481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7326/0003-4819-139-11-200311180-00013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073706357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075081052", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076875870", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077344485", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.2007.4353254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077517472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02841850802627437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077825582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02841850802627437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077825582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078386463", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-02", 
    "datePublishedReg": "2015-02-01", 
    "description": "PURPOSE: The aim of this study is to assess a software-based method with semiautomated correction for partial volume effect (PVE) to quantify the metabolic activity of pulmonary malignancies in patients who underwent non-gated and respiratory-gated 2-deoxy-2-[(18)F]fluoro-D-glucose (FDG)-positron emission tomography (PET)/x-ray computed tomography(CT).\nPROCEDURES: The study included 106 lesions of 55 lung cancer patients who underwent respiratory-gated FDG-PET/CT for radiation therapy treatment planning. Volumetric PET/CT parameters were determined by using 4D PET/CT and non-gated PET/CT images. We used a semiautomated program employing an adaptive contrast-oriented thresholding algorithm for lesion delineation as well as a lesion-based partial volume effect correction algorithm. We compared respiratory-gated parameters with non-gated parameters by using pairwise comparison and interclass correlation coefficient assessment. In a multivariable regression analysis, we also examined factors, which can affect quantification accuracy, including the size of lesion and the location of tumor.\nRESULTS: This study showed that quantification of volumetric parameters of 4D PET/CT images using an adaptive contrast-oriented thresholding algorithm and 3D lesion-based partial volume correction is feasible. We observed slight increase in FDG uptake by using PET/CT volumetric parameters in comparison of highest respiratory-gated values with non-gated values. After correction for partial volume effect, the mean standardized uptake value (SUVmean) and total lesion glycolysis (TLG) increased substantially (p value <0.001). However, we did not observe a clinically significant difference between partial volume corrected parameters of respiratory-gated and non-gated PET/CT scans. Regression analysis showed that tumor volume was the main predictor of quantification inaccuracy caused by partial volume effect.\nCONCLUSIONS: Based on this study, assessment of volumetric PET/CT parameters and partial volume effect correction for accurate quantification of lung malignant lesions by using respiratory non-gated PET images are feasible and it is comparable to gated measurements. Partial volume correction increased both the respiratory-gated and non-gated values significantly and appears to be the dominant source of quantification error of lung lesions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11307-014-0776-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1118463", 
        "issn": [
          "1536-1632", 
          "1878-5751"
        ], 
        "name": "Molecular Imaging and Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "Application of Partial Volume Effect Correction and 4D PET in the Quantification of FDG Avid Lung Lesions", 
    "pagination": "140-148", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1c580e6c2385de6acb678f43c8f1789625f1be62ad9e9b9459407b94b622eb60"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25080325"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101125610"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11307-014-0776-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005950127"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11307-014-0776-6", 
      "https://app.dimensions.ai/details/publication/pub.1005950127"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000520.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11307-014-0776-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11307-014-0776-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11307-014-0776-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11307-014-0776-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11307-014-0776-6'


 

This table displays all metadata directly associated to this object as RDF triples.

359 TRIPLES      21 PREDICATES      94 URIs      43 LITERALS      31 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11307-014-0776-6 schema:about N07374c42ced844e79677659d8ab224cb
2 N12f9f42d70f848bc9956c25aaacf2f87
3 N17446ed78eac446aa5b46eccaa02abf4
4 N180f08586bfc478fa68f49c6723655eb
5 N1b4ccd301c0a4efb86b0c08f07d27563
6 N1c34bd1debcf4ecf8d254f3690ddb290
7 N2e78e7f0ec564f479af13482431428cc
8 N3446fe81fa11471fafb87f6e58bab9ef
9 N38643d42ce32465295577e789ff253f1
10 N58ebe76c21ea4687bd502affa529c875
11 N700bfa3535ed4fa18e44ed5830eb2d9d
12 N7fc8395029454b1fac01534d67e25395
13 N93be22ce559c4536b0e17f6d9b95173a
14 Na00ee10e2d5048728a1a181195438eac
15 Nbfd1c75d113f4ea4af17dd9fab4098d5
16 Ncb590049f8c14a6ea24f7f0534932e0b
17 Nce344739b8fe47b3964fe5312aa27a81
18 Nea8e441c568e44c7957e92318a5411be
19 Nf4ad901f4dd346df8fa9e028748cca79
20 Nf9fd5b279b5643809b41d8c610ced66d
21 Nfc6f1abee4264f95aca9cb5bf59acfc1
22 Nff8c450557b94f56b02868f655206b50
23 anzsrc-for:08
24 anzsrc-for:0801
25 schema:author Ndc74f7660a724177ae35b0959ab71b4f
26 schema:citation sg:pub.10.1007/s00259-002-0924-0
27 sg:pub.10.1007/s00259-008-0931-x
28 sg:pub.10.1007/s00259-010-1423-3
29 sg:pub.10.1007/s00259-013-2407-x
30 sg:pub.10.1007/s00259-013-2579-4
31 sg:pub.10.1007/s00259-013-2625-2
32 sg:pub.10.1007/s00395-008-0717-0
33 sg:pub.10.1007/s12149-008-0225-1
34 sg:pub.10.1186/2191-219x-2-16
35 https://app.dimensions.ai/details/publication/pub.1075081052
36 https://app.dimensions.ai/details/publication/pub.1076875870
37 https://app.dimensions.ai/details/publication/pub.1077344485
38 https://app.dimensions.ai/details/publication/pub.1078386463
39 https://doi.org/10.1016/j.cpet.2007.10.005
40 https://doi.org/10.1016/j.ijrobp.2010.12.060
41 https://doi.org/10.1016/j.meddos.2005.12.005
42 https://doi.org/10.1016/s0140-6736(86)90837-8
43 https://doi.org/10.1016/s0958-3947(02)00136-x
44 https://doi.org/10.1053/j.semnuclmed.2007.01.005
45 https://doi.org/10.1053/j.semnuclmed.2008.01.002
46 https://doi.org/10.1053/snuc.2003.127313
47 https://doi.org/10.1080/02841850802627437
48 https://doi.org/10.1097/mnm.0000000000000048
49 https://doi.org/10.1097/mnm.0b013e32831af204
50 https://doi.org/10.1109/iembs.2007.4353254
51 https://doi.org/10.1109/tmi.2006.870892
52 https://doi.org/10.1111/j.0006-341x.2002.01020.x
53 https://doi.org/10.1118/1.1809778
54 https://doi.org/10.1118/1.2192581
55 https://doi.org/10.1118/1.3112422
56 https://doi.org/10.1118/1.3160108
57 https://doi.org/10.1118/1.3480508
58 https://doi.org/10.1118/1.3483784
59 https://doi.org/10.1118/1.3512780
60 https://doi.org/10.1118/1.4766876
61 https://doi.org/10.2307/2532051
62 https://doi.org/10.2967/jnumed.106.035774
63 https://doi.org/10.2967/jnumed.107.049296
64 https://doi.org/10.2967/jnumed.108.050401
65 https://doi.org/10.2967/jnumed.109.068759
66 https://doi.org/10.2967/jnumed.111.093443
67 https://doi.org/10.2967/jnumed.113.130138
68 https://doi.org/10.7326/0003-4819-139-11-200311180-00013
69 schema:datePublished 2015-02
70 schema:datePublishedReg 2015-02-01
71 schema:description PURPOSE: The aim of this study is to assess a software-based method with semiautomated correction for partial volume effect (PVE) to quantify the metabolic activity of pulmonary malignancies in patients who underwent non-gated and respiratory-gated 2-deoxy-2-[(18)F]fluoro-D-glucose (FDG)-positron emission tomography (PET)/x-ray computed tomography(CT). PROCEDURES: The study included 106 lesions of 55 lung cancer patients who underwent respiratory-gated FDG-PET/CT for radiation therapy treatment planning. Volumetric PET/CT parameters were determined by using 4D PET/CT and non-gated PET/CT images. We used a semiautomated program employing an adaptive contrast-oriented thresholding algorithm for lesion delineation as well as a lesion-based partial volume effect correction algorithm. We compared respiratory-gated parameters with non-gated parameters by using pairwise comparison and interclass correlation coefficient assessment. In a multivariable regression analysis, we also examined factors, which can affect quantification accuracy, including the size of lesion and the location of tumor. RESULTS: This study showed that quantification of volumetric parameters of 4D PET/CT images using an adaptive contrast-oriented thresholding algorithm and 3D lesion-based partial volume correction is feasible. We observed slight increase in FDG uptake by using PET/CT volumetric parameters in comparison of highest respiratory-gated values with non-gated values. After correction for partial volume effect, the mean standardized uptake value (SUVmean) and total lesion glycolysis (TLG) increased substantially (p value <0.001). However, we did not observe a clinically significant difference between partial volume corrected parameters of respiratory-gated and non-gated PET/CT scans. Regression analysis showed that tumor volume was the main predictor of quantification inaccuracy caused by partial volume effect. CONCLUSIONS: Based on this study, assessment of volumetric PET/CT parameters and partial volume effect correction for accurate quantification of lung malignant lesions by using respiratory non-gated PET images are feasible and it is comparable to gated measurements. Partial volume correction increased both the respiratory-gated and non-gated values significantly and appears to be the dominant source of quantification error of lung lesions.
72 schema:genre research_article
73 schema:inLanguage en
74 schema:isAccessibleForFree true
75 schema:isPartOf N2d34ca2364934cbe9d9eefec30977cb8
76 N485294ac622f400f90177276c6397e70
77 sg:journal.1118463
78 schema:name Application of Partial Volume Effect Correction and 4D PET in the Quantification of FDG Avid Lung Lesions
79 schema:pagination 140-148
80 schema:productId N2e33b161c4e94111a69bbd0b76d0c63d
81 N4e3dc6dda4b54d5aa655231b597a063e
82 N5ba2428e8d8c4bda93be38ec78c45589
83 N6754fe9ddb4b4bc68dfbfe78f97ae422
84 Nd8b8360812f148caaeaac6afce4d8aef
85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005950127
86 https://doi.org/10.1007/s11307-014-0776-6
87 schema:sdDatePublished 2019-04-10T21:38
88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
89 schema:sdPublisher Ne666ad83923a4e13b6411f5651c9cd65
90 schema:url http://link.springer.com/10.1007%2Fs11307-014-0776-6
91 sgo:license sg:explorer/license/
92 sgo:sdDataset articles
93 rdf:type schema:ScholarlyArticle
94 N07374c42ced844e79677659d8ab224cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Algorithms
96 rdf:type schema:DefinedTerm
97 N12f9f42d70f848bc9956c25aaacf2f87 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Multivariate Analysis
99 rdf:type schema:DefinedTerm
100 N17446ed78eac446aa5b46eccaa02abf4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Tomography, X-Ray Computed
102 rdf:type schema:DefinedTerm
103 N17504cd81a3f4f96be54d8cba9ebf206 rdf:first sg:person.0761176705.59
104 rdf:rest N7f31427744b04b1f8be0f417c1c58252
105 N180f08586bfc478fa68f49c6723655eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Positron-Emission Tomography
107 rdf:type schema:DefinedTerm
108 N1b4ccd301c0a4efb86b0c08f07d27563 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Lung
110 rdf:type schema:DefinedTerm
111 N1c34bd1debcf4ecf8d254f3690ddb290 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Female
113 rdf:type schema:DefinedTerm
114 N26e342ca811446f4b98b10bc0ee5d337 schema:affiliation https://www.grid.ac/institutes/grid.411115.1
115 schema:familyName Boon-Keng
116 schema:givenName Teo K.
117 rdf:type schema:Person
118 N2d34ca2364934cbe9d9eefec30977cb8 schema:volumeNumber 17
119 rdf:type schema:PublicationVolume
120 N2e33b161c4e94111a69bbd0b76d0c63d schema:name pubmed_id
121 schema:value 25080325
122 rdf:type schema:PropertyValue
123 N2e78e7f0ec564f479af13482431428cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Lung Neoplasms
125 rdf:type schema:DefinedTerm
126 N3446fe81fa11471fafb87f6e58bab9ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Middle Aged
128 rdf:type schema:DefinedTerm
129 N38643d42ce32465295577e789ff253f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Aged
131 rdf:type schema:DefinedTerm
132 N44c79853a1104dfeb0140000363ff07e rdf:first sg:person.01042766404.29
133 rdf:rest N17504cd81a3f4f96be54d8cba9ebf206
134 N485294ac622f400f90177276c6397e70 schema:issueNumber 1
135 rdf:type schema:PublicationIssue
136 N4e3dc6dda4b54d5aa655231b597a063e schema:name readcube_id
137 schema:value 1c580e6c2385de6acb678f43c8f1789625f1be62ad9e9b9459407b94b622eb60
138 rdf:type schema:PropertyValue
139 N58ebe76c21ea4687bd502affa529c875 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Automation
141 rdf:type schema:DefinedTerm
142 N5ba2428e8d8c4bda93be38ec78c45589 schema:name doi
143 schema:value 10.1007/s11307-014-0776-6
144 rdf:type schema:PropertyValue
145 N6754fe9ddb4b4bc68dfbfe78f97ae422 schema:name dimensions_id
146 schema:value pub.1005950127
147 rdf:type schema:PropertyValue
148 N700bfa3535ed4fa18e44ed5830eb2d9d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Reproducibility of Results
150 rdf:type schema:DefinedTerm
151 N70a994bd5518418fb7b051a1316ce941 rdf:first sg:person.01355106402.62
152 rdf:rest Nd7316f8b056c4be08731f745e40e3f98
153 N72cfb85f07bf4ac2b5e2fda540849efa rdf:first sg:person.01300453230.34
154 rdf:rest Neb1bb468796f49dfa566af39f26642b6
155 N7f31427744b04b1f8be0f417c1c58252 rdf:first sg:person.01026611221.88
156 rdf:rest N72cfb85f07bf4ac2b5e2fda540849efa
157 N7fc8395029454b1fac01534d67e25395 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Male
159 rdf:type schema:DefinedTerm
160 N93be22ce559c4536b0e17f6d9b95173a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Whole Body Imaging
162 rdf:type schema:DefinedTerm
163 N9cc2b99b29114b229fcdd442c336e107 rdf:first sg:person.01276554062.91
164 rdf:rest N44c79853a1104dfeb0140000363ff07e
165 Na00ee10e2d5048728a1a181195438eac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Fluorodeoxyglucose F18
167 rdf:type schema:DefinedTerm
168 Nbfd1c75d113f4ea4af17dd9fab4098d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Humans
170 rdf:type schema:DefinedTerm
171 Ncb590049f8c14a6ea24f7f0534932e0b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Regression Analysis
173 rdf:type schema:DefinedTerm
174 Nce344739b8fe47b3964fe5312aa27a81 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Image Processing, Computer-Assisted
176 rdf:type schema:DefinedTerm
177 Nd7316f8b056c4be08731f745e40e3f98 rdf:first N26e342ca811446f4b98b10bc0ee5d337
178 rdf:rest Ne9f63763868b4c0aa4646f289315ea19
179 Nd8b8360812f148caaeaac6afce4d8aef schema:name nlm_unique_id
180 schema:value 101125610
181 rdf:type schema:PropertyValue
182 Ndc74f7660a724177ae35b0959ab71b4f rdf:first sg:person.0774653204.10
183 rdf:rest N70a994bd5518418fb7b051a1316ce941
184 Ne666ad83923a4e13b6411f5651c9cd65 schema:name Springer Nature - SN SciGraph project
185 rdf:type schema:Organization
186 Ne9f63763868b4c0aa4646f289315ea19 rdf:first sg:person.01044605774.07
187 rdf:rest N9cc2b99b29114b229fcdd442c336e107
188 Nea8e441c568e44c7957e92318a5411be schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Multimodal Imaging
190 rdf:type schema:DefinedTerm
191 Neb1bb468796f49dfa566af39f26642b6 rdf:first sg:person.013064447257.07
192 rdf:rest rdf:nil
193 Nf4ad901f4dd346df8fa9e028748cca79 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
194 schema:name Radiopharmaceuticals
195 rdf:type schema:DefinedTerm
196 Nf9fd5b279b5643809b41d8c610ced66d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
197 schema:name Motion
198 rdf:type schema:DefinedTerm
199 Nfc6f1abee4264f95aca9cb5bf59acfc1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
200 schema:name Respiration
201 rdf:type schema:DefinedTerm
202 Nff8c450557b94f56b02868f655206b50 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
203 schema:name Contrast Media
204 rdf:type schema:DefinedTerm
205 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
206 schema:name Information and Computing Sciences
207 rdf:type schema:DefinedTerm
208 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
209 schema:name Artificial Intelligence and Image Processing
210 rdf:type schema:DefinedTerm
211 sg:journal.1118463 schema:issn 1536-1632
212 1878-5751
213 schema:name Molecular Imaging and Biology
214 rdf:type schema:Periodical
215 sg:person.01026611221.88 schema:affiliation https://www.grid.ac/institutes/grid.411115.1
216 schema:familyName Torigian
217 schema:givenName Drew A.
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026611221.88
219 rdf:type schema:Person
220 sg:person.01042766404.29 schema:affiliation https://www.grid.ac/institutes/grid.411115.1
221 schema:familyName Saboury
222 schema:givenName Babak
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042766404.29
224 rdf:type schema:Person
225 sg:person.01044605774.07 schema:affiliation https://www.grid.ac/institutes/grid.411115.1
226 schema:familyName Houshmand
227 schema:givenName Sina
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044605774.07
229 rdf:type schema:Person
230 sg:person.01276554062.91 schema:affiliation https://www.grid.ac/institutes/grid.411115.1
231 schema:familyName Khiewvan
232 schema:givenName Benjapa
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276554062.91
234 rdf:type schema:Person
235 sg:person.01300453230.34 schema:affiliation https://www.grid.ac/institutes/grid.8591.5
236 schema:familyName Zaidi
237 schema:givenName Habib
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300453230.34
239 rdf:type schema:Person
240 sg:person.013064447257.07 schema:affiliation https://www.grid.ac/institutes/grid.411115.1
241 schema:familyName Alavi
242 schema:givenName Abass
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013064447257.07
244 rdf:type schema:Person
245 sg:person.01355106402.62 schema:affiliation https://www.grid.ac/institutes/grid.411115.1
246 schema:familyName Borofsky
247 schema:givenName Samuel
248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355106402.62
249 rdf:type schema:Person
250 sg:person.0761176705.59 schema:affiliation https://www.grid.ac/institutes/grid.411115.1
251 schema:familyName Codreanu
252 schema:givenName Ion
253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761176705.59
254 rdf:type schema:Person
255 sg:person.0774653204.10 schema:affiliation https://www.grid.ac/institutes/grid.411115.1
256 schema:familyName Salavati
257 schema:givenName Ali
258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774653204.10
259 rdf:type schema:Person
260 sg:pub.10.1007/s00259-002-0924-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012723639
261 https://doi.org/10.1007/s00259-002-0924-0
262 rdf:type schema:CreativeWork
263 sg:pub.10.1007/s00259-008-0931-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048275554
264 https://doi.org/10.1007/s00259-008-0931-x
265 rdf:type schema:CreativeWork
266 sg:pub.10.1007/s00259-010-1423-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052969468
267 https://doi.org/10.1007/s00259-010-1423-3
268 rdf:type schema:CreativeWork
269 sg:pub.10.1007/s00259-013-2407-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020424181
270 https://doi.org/10.1007/s00259-013-2407-x
271 rdf:type schema:CreativeWork
272 sg:pub.10.1007/s00259-013-2579-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043290425
273 https://doi.org/10.1007/s00259-013-2579-4
274 rdf:type schema:CreativeWork
275 sg:pub.10.1007/s00259-013-2625-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019034498
276 https://doi.org/10.1007/s00259-013-2625-2
277 rdf:type schema:CreativeWork
278 sg:pub.10.1007/s00395-008-0717-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002871231
279 https://doi.org/10.1007/s00395-008-0717-0
280 rdf:type schema:CreativeWork
281 sg:pub.10.1007/s12149-008-0225-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013779505
282 https://doi.org/10.1007/s12149-008-0225-1
283 rdf:type schema:CreativeWork
284 sg:pub.10.1186/2191-219x-2-16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050768136
285 https://doi.org/10.1186/2191-219x-2-16
286 rdf:type schema:CreativeWork
287 https://app.dimensions.ai/details/publication/pub.1075081052 schema:CreativeWork
288 https://app.dimensions.ai/details/publication/pub.1076875870 schema:CreativeWork
289 https://app.dimensions.ai/details/publication/pub.1077344485 schema:CreativeWork
290 https://app.dimensions.ai/details/publication/pub.1078386463 schema:CreativeWork
291 https://doi.org/10.1016/j.cpet.2007.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022473250
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1016/j.ijrobp.2010.12.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048321974
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1016/j.meddos.2005.12.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045263377
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1016/s0140-6736(86)90837-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040287180
298 rdf:type schema:CreativeWork
299 https://doi.org/10.1016/s0958-3947(02)00136-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045600171
300 rdf:type schema:CreativeWork
301 https://doi.org/10.1053/j.semnuclmed.2007.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038419506
302 rdf:type schema:CreativeWork
303 https://doi.org/10.1053/j.semnuclmed.2008.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000754835
304 rdf:type schema:CreativeWork
305 https://doi.org/10.1053/snuc.2003.127313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034167044
306 rdf:type schema:CreativeWork
307 https://doi.org/10.1080/02841850802627437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077825582
308 rdf:type schema:CreativeWork
309 https://doi.org/10.1097/mnm.0000000000000048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024626081
310 rdf:type schema:CreativeWork
311 https://doi.org/10.1097/mnm.0b013e32831af204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024728759
312 rdf:type schema:CreativeWork
313 https://doi.org/10.1109/iembs.2007.4353254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077517472
314 rdf:type schema:CreativeWork
315 https://doi.org/10.1109/tmi.2006.870892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694834
316 rdf:type schema:CreativeWork
317 https://doi.org/10.1111/j.0006-341x.2002.01020.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043529473
318 rdf:type schema:CreativeWork
319 https://doi.org/10.1118/1.1809778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038821018
320 rdf:type schema:CreativeWork
321 https://doi.org/10.1118/1.2192581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005528187
322 rdf:type schema:CreativeWork
323 https://doi.org/10.1118/1.3112422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000568645
324 rdf:type schema:CreativeWork
325 https://doi.org/10.1118/1.3160108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022954868
326 rdf:type schema:CreativeWork
327 https://doi.org/10.1118/1.3480508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040437380
328 rdf:type schema:CreativeWork
329 https://doi.org/10.1118/1.3483784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047405637
330 rdf:type schema:CreativeWork
331 https://doi.org/10.1118/1.3512780 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025260241
332 rdf:type schema:CreativeWork
333 https://doi.org/10.1118/1.4766876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013766657
334 rdf:type schema:CreativeWork
335 https://doi.org/10.2307/2532051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069977481
336 rdf:type schema:CreativeWork
337 https://doi.org/10.2967/jnumed.106.035774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005435708
338 rdf:type schema:CreativeWork
339 https://doi.org/10.2967/jnumed.107.049296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034962756
340 rdf:type schema:CreativeWork
341 https://doi.org/10.2967/jnumed.108.050401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037285767
342 rdf:type schema:CreativeWork
343 https://doi.org/10.2967/jnumed.109.068759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049790673
344 rdf:type schema:CreativeWork
345 https://doi.org/10.2967/jnumed.111.093443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002236986
346 rdf:type schema:CreativeWork
347 https://doi.org/10.2967/jnumed.113.130138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036012979
348 rdf:type schema:CreativeWork
349 https://doi.org/10.7326/0003-4819-139-11-200311180-00013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073706357
350 rdf:type schema:CreativeWork
351 https://www.grid.ac/institutes/grid.411115.1 schema:alternateName Hospital of the University of Pennsylvania
352 schema:name Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
353 Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, USA
354 rdf:type schema:Organization
355 https://www.grid.ac/institutes/grid.8591.5 schema:alternateName University of Geneva
356 schema:name Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9700 RB, Groningen, The Netherlands
357 Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland
358 Geneva Neuroscience Center, Geneva University, CH-1211, Geneva, Switzerland
359 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...