Extraction of Input Function from Rat [18F]FDG PET Images View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-12

AUTHORS

Nobuyuki Kudomi, Marco Bucci, Vesa Oikonen, Mika Silvennoinen, Heikki Kainulainen, Pirjo Nuutila, Patricia Iozzo, Anne Roivainen

ABSTRACT

PURPOSE: Small animal positron emission tomography (PET) with 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) facilitates the visualization and quantification of glucose uptake in rats and mice. The quantification of glucose uptake requires an input function, which is generally obtained by measuring radioactivity in arterial plasma withdrawn during PET imaging; however, this approach is not always feasible because abundant blood sampling may affect the physiological process being measured. The purpose of the present study was to develop a new model-based technique (K-Model) and compare it to the previous F-Model. MATERIALS AND METHODS: The study material consisted of two separate groups of rats having different physiological conditions. Each group was scanned by different PET cameras, i.e., HRRT and Inveon-PET/CT, and blood samples were drawn during imaging. Two kinds of model functions, i.e., F-Model and K-Model, were used for estimating input functions by an optimization procedure, applying restrictions on boundary conditions. To validate the method, glucose influx rate, Ki, was computed from the estimated and measured input functions for comparison. RESULTS: The input functions were well reproduced when single-point blood count data were used for both models. The difference in Ki values between the model-based and blood sampling methods was 1.1±15.1% by K-Model which showed the most feasible in the study. The regression analysis showed a tight correlation between the image-based and blood sampling methods, and the slope was close to unity and the intercept close to zero. CONCLUSION: It is possible to estimate the input function from rat [18F]FDG PET images, thus facilitating the assessment of glucose metabolism without affecting the physiological conditions of the animal as a result of abundant blood sampling. More... »

PAGES

1241-1249

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11307-010-0449-z

DOI

http://dx.doi.org/10.1007/s11307-010-0449-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019070379

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21061176


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorodeoxyglucose F18", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Positron-Emission Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rats", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rats, Sprague-Dawley", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ventricular Function", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kagawa University", 
          "id": "https://www.grid.ac/institutes/grid.258331.e", 
          "name": [
            "Turku PET Centre, University of Turku, Turku, Finland", 
            "Department of Medical Physics, Faculty of Medicine, Kagawa University, Kagawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kudomi", 
        "givenName": "Nobuyuki", 
        "id": "sg:person.01065623464.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065623464.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Turku PET Centre", 
          "id": "https://www.grid.ac/institutes/grid.470895.7", 
          "name": [
            "Turku PET Centre, University of Turku, Turku, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bucci", 
        "givenName": "Marco", 
        "id": "sg:person.01205146156.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205146156.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Turku PET Centre", 
          "id": "https://www.grid.ac/institutes/grid.470895.7", 
          "name": [
            "Turku PET Centre, University of Turku, Turku, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oikonen", 
        "givenName": "Vesa", 
        "id": "sg:person.0633127700.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633127700.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Jyv\u00e4skyl\u00e4", 
          "id": "https://www.grid.ac/institutes/grid.9681.6", 
          "name": [
            "Department of Biology of Physical Activity, University of Jyv\u00e4skyl\u00e4, Jyv\u00e4skyl\u00e4, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Silvennoinen", 
        "givenName": "Mika", 
        "id": "sg:person.01001623163.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001623163.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Jyv\u00e4skyl\u00e4", 
          "id": "https://www.grid.ac/institutes/grid.9681.6", 
          "name": [
            "Department of Biology of Physical Activity, University of Jyv\u00e4skyl\u00e4, Jyv\u00e4skyl\u00e4, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kainulainen", 
        "givenName": "Heikki", 
        "id": "sg:person.01232300163.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232300163.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Turku", 
          "id": "https://www.grid.ac/institutes/grid.1374.1", 
          "name": [
            "Turku PET Centre, University of Turku, Turku, Finland", 
            "Department of Medicine, University of Turku, Turku, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nuutila", 
        "givenName": "Pirjo", 
        "id": "sg:person.0763376117.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763376117.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto di Fisiologia Clinica", 
          "id": "https://www.grid.ac/institutes/grid.418529.3", 
          "name": [
            "Turku PET Centre, University of Turku, Turku, Finland", 
            "Institute of Clinical Physiology, National Research Council, Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Iozzo", 
        "givenName": "Patricia", 
        "id": "sg:person.01225611056.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225611056.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Turku", 
          "id": "https://www.grid.ac/institutes/grid.1374.1", 
          "name": [
            "Turku PET Centre, University of Turku, Turku, Finland", 
            "Turku Center for Disease Modeling, University of Turku, Turku, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roivainen", 
        "givenName": "Anne", 
        "id": "sg:person.01031503426.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031503426.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.2967/jnumed.107.047613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003120492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00965836", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003909775", 
          "https://doi.org/10.1007/bf00965836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.286.17.2120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007819089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.106.038182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008258621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1097/00004647-200010000-00011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011820861", 
          "https://doi.org/10.1097/00004647-200010000-00011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004647-200010000-00011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011820861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11307-005-0014-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015370132", 
          "https://doi.org/10.1007/s11307-005-0014-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11307-005-0014-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015370132", 
          "https://doi.org/10.1007/s11307-005-0014-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/jcbfm.1985.87", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016810523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/jcbfm.1985.87", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016810523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ana.410060502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017761252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/jcbfm.1983.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018753419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/jcbfm.1983.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018753419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-009-1140-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020756194", 
          "https://doi.org/10.1007/s00259-009-1140-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-009-1140-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020756194", 
          "https://doi.org/10.1007/s00259-009-1140-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-009-1140-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020756194", 
          "https://doi.org/10.1007/s00259-009-1140-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1097/00004647-200202000-00012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038064580", 
          "https://doi.org/10.1097/00004647-200202000-00012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004647-200202000-00012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038064580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7101(93)90049-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039665131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074808936", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076822358", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076848173", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpendo.1980.238.1.e69", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082072291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082152813", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-12", 
    "datePublishedReg": "2011-12-01", 
    "description": "PURPOSE: Small animal positron emission tomography (PET) with 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) facilitates the visualization and quantification of glucose uptake in rats and mice. The quantification of glucose uptake requires an input function, which is generally obtained by measuring radioactivity in arterial plasma withdrawn during PET imaging; however, this approach is not always feasible because abundant blood sampling may affect the physiological process being measured. The purpose of the present study was to develop a new model-based technique (K-Model) and compare it to the previous F-Model.\nMATERIALS AND METHODS: The study material consisted of two separate groups of rats having different physiological conditions. Each group was scanned by different PET cameras, i.e., HRRT and Inveon-PET/CT, and blood samples were drawn during imaging. Two kinds of model functions, i.e., F-Model and K-Model, were used for estimating input functions by an optimization procedure, applying restrictions on boundary conditions. To validate the method, glucose influx rate, Ki, was computed from the estimated and measured input functions for comparison.\nRESULTS: The input functions were well reproduced when single-point blood count data were used for both models. The difference in Ki values between the model-based and blood sampling methods was 1.1\u00b115.1% by K-Model which showed the most feasible in the study. The regression analysis showed a tight correlation between the image-based and blood sampling methods, and the slope was close to unity and the intercept close to zero.\nCONCLUSION: It is possible to estimate the input function from rat [18F]FDG PET images, thus facilitating the assessment of glucose metabolism without affecting the physiological conditions of the animal as a result of abundant blood sampling.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11307-010-0449-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6058823", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1118463", 
        "issn": [
          "1536-1632", 
          "1878-5751"
        ], 
        "name": "Molecular Imaging and Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Extraction of Input Function from Rat [18F]FDG PET Images", 
    "pagination": "1241-1249", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5add407e9567f4f4eae8a66fc869ed5f45de0ee57821a4ac336ec68e79fb24e1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21061176"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101125610"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11307-010-0449-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019070379"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11307-010-0449-z", 
      "https://app.dimensions.ai/details/publication/pub.1019070379"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000521.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11307-010-0449-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11307-010-0449-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11307-010-0449-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11307-010-0449-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11307-010-0449-z'


 

This table displays all metadata directly associated to this object as RDF triples.

234 TRIPLES      21 PREDICATES      58 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11307-010-0449-z schema:about N111549afd2e54f71a0304a5fa2be7d28
2 N7944f1042bf448c2b5ccff8168cc6998
3 N8fdbc24a60ee4b698df7ba88f3f6f433
4 N958f534d938e479f8b31a5fce45c19e5
5 Ncb8d1f242da642d59d877707bad6c06a
6 Nde91acece2394c1aab841a80cd1fcaa7
7 Ne114e2bb088742c3a2b20fa2f8838451
8 Ne7bcce72cd3844e2b25dba08fa7df2bc
9 Nf4894a3634be44bbbca5857a36c6d1a9
10 Nf50297a4e34b4224a690b716cf162e11
11 anzsrc-for:11
12 anzsrc-for:1103
13 schema:author Nd00b8b0ecb954f77967e0df06e8d5d31
14 schema:citation sg:pub.10.1007/bf00965836
15 sg:pub.10.1007/s00259-009-1140-y
16 sg:pub.10.1007/s11307-005-0014-3
17 sg:pub.10.1097/00004647-200010000-00011
18 sg:pub.10.1097/00004647-200202000-00012
19 https://app.dimensions.ai/details/publication/pub.1074808936
20 https://app.dimensions.ai/details/publication/pub.1076822358
21 https://app.dimensions.ai/details/publication/pub.1076848173
22 https://app.dimensions.ai/details/publication/pub.1082152813
23 https://doi.org/10.1001/jama.286.17.2120
24 https://doi.org/10.1002/ana.410060502
25 https://doi.org/10.1016/0020-7101(93)90049-c
26 https://doi.org/10.1038/jcbfm.1983.1
27 https://doi.org/10.1038/jcbfm.1985.87
28 https://doi.org/10.1097/00004647-200010000-00011
29 https://doi.org/10.1097/00004647-200202000-00012
30 https://doi.org/10.1152/ajpendo.1980.238.1.e69
31 https://doi.org/10.2967/jnumed.106.038182
32 https://doi.org/10.2967/jnumed.107.047613
33 schema:datePublished 2011-12
34 schema:datePublishedReg 2011-12-01
35 schema:description PURPOSE: Small animal positron emission tomography (PET) with 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) facilitates the visualization and quantification of glucose uptake in rats and mice. The quantification of glucose uptake requires an input function, which is generally obtained by measuring radioactivity in arterial plasma withdrawn during PET imaging; however, this approach is not always feasible because abundant blood sampling may affect the physiological process being measured. The purpose of the present study was to develop a new model-based technique (K-Model) and compare it to the previous F-Model. MATERIALS AND METHODS: The study material consisted of two separate groups of rats having different physiological conditions. Each group was scanned by different PET cameras, i.e., HRRT and Inveon-PET/CT, and blood samples were drawn during imaging. Two kinds of model functions, i.e., F-Model and K-Model, were used for estimating input functions by an optimization procedure, applying restrictions on boundary conditions. To validate the method, glucose influx rate, Ki, was computed from the estimated and measured input functions for comparison. RESULTS: The input functions were well reproduced when single-point blood count data were used for both models. The difference in Ki values between the model-based and blood sampling methods was 1.1±15.1% by K-Model which showed the most feasible in the study. The regression analysis showed a tight correlation between the image-based and blood sampling methods, and the slope was close to unity and the intercept close to zero. CONCLUSION: It is possible to estimate the input function from rat [18F]FDG PET images, thus facilitating the assessment of glucose metabolism without affecting the physiological conditions of the animal as a result of abundant blood sampling.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf Necf7d1cad308475bb595fbe1b8274750
40 Nff8d4fcda1ae4432b4bee425a3b8b54d
41 sg:journal.1118463
42 schema:name Extraction of Input Function from Rat [18F]FDG PET Images
43 schema:pagination 1241-1249
44 schema:productId N0cbdbd07feca4e2abfbf33a7316df051
45 N4e03bc8946e64501aa4828fbb7ff4551
46 N762b7079975449c685b3165f042032bd
47 Ndeeb8e3e5fb746db8bd7747f8fa3b5eb
48 Ne788f2d419d341b58e9d1d05cb58f685
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019070379
50 https://doi.org/10.1007/s11307-010-0449-z
51 schema:sdDatePublished 2019-04-10T21:39
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N153903acb3044b7789eb100d65bbf470
54 schema:url http://link.springer.com/10.1007%2Fs11307-010-0449-z
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N0cbdbd07feca4e2abfbf33a7316df051 schema:name dimensions_id
59 schema:value pub.1019070379
60 rdf:type schema:PropertyValue
61 N111549afd2e54f71a0304a5fa2be7d28 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
62 schema:name Time Factors
63 rdf:type schema:DefinedTerm
64 N153903acb3044b7789eb100d65bbf470 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N343833911e9b4e0aa41741605becdccd rdf:first sg:person.01001623163.78
67 rdf:rest Nf50c358998ef4343837698254c813da9
68 N4e03bc8946e64501aa4828fbb7ff4551 schema:name doi
69 schema:value 10.1007/s11307-010-0449-z
70 rdf:type schema:PropertyValue
71 N617e563871774e51a3d5e8ca8bb04c0c rdf:first sg:person.0633127700.74
72 rdf:rest N343833911e9b4e0aa41741605becdccd
73 N762b7079975449c685b3165f042032bd schema:name pubmed_id
74 schema:value 21061176
75 rdf:type schema:PropertyValue
76 N7944f1042bf448c2b5ccff8168cc6998 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Models, Biological
78 rdf:type schema:DefinedTerm
79 N84549c68d5ba43daa3f46591f0eaeff1 rdf:first sg:person.01031503426.04
80 rdf:rest rdf:nil
81 N8fdbc24a60ee4b698df7ba88f3f6f433 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Rats, Sprague-Dawley
83 rdf:type schema:DefinedTerm
84 N958f534d938e479f8b31a5fce45c19e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Ventricular Function
86 rdf:type schema:DefinedTerm
87 Nc4d7aa490cfc41f88ff071a93abb25d6 rdf:first sg:person.01205146156.99
88 rdf:rest N617e563871774e51a3d5e8ca8bb04c0c
89 Ncb8d1f242da642d59d877707bad6c06a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Fluorodeoxyglucose F18
91 rdf:type schema:DefinedTerm
92 Nd00b8b0ecb954f77967e0df06e8d5d31 rdf:first sg:person.01065623464.32
93 rdf:rest Nc4d7aa490cfc41f88ff071a93abb25d6
94 Nde91acece2394c1aab841a80cd1fcaa7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Positron-Emission Tomography
96 rdf:type schema:DefinedTerm
97 Nde94d765900647129dd52137c1b2596c rdf:first sg:person.01225611056.51
98 rdf:rest N84549c68d5ba43daa3f46591f0eaeff1
99 Ndee326abb1c64f68bc66278ba6c127a2 rdf:first sg:person.0763376117.17
100 rdf:rest Nde94d765900647129dd52137c1b2596c
101 Ndeeb8e3e5fb746db8bd7747f8fa3b5eb schema:name readcube_id
102 schema:value 5add407e9567f4f4eae8a66fc869ed5f45de0ee57821a4ac336ec68e79fb24e1
103 rdf:type schema:PropertyValue
104 Ne114e2bb088742c3a2b20fa2f8838451 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Female
106 rdf:type schema:DefinedTerm
107 Ne788f2d419d341b58e9d1d05cb58f685 schema:name nlm_unique_id
108 schema:value 101125610
109 rdf:type schema:PropertyValue
110 Ne7bcce72cd3844e2b25dba08fa7df2bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Rats
112 rdf:type schema:DefinedTerm
113 Necf7d1cad308475bb595fbe1b8274750 schema:volumeNumber 13
114 rdf:type schema:PublicationVolume
115 Nf4894a3634be44bbbca5857a36c6d1a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Mice
117 rdf:type schema:DefinedTerm
118 Nf50297a4e34b4224a690b716cf162e11 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Animals
120 rdf:type schema:DefinedTerm
121 Nf50c358998ef4343837698254c813da9 rdf:first sg:person.01232300163.52
122 rdf:rest Ndee326abb1c64f68bc66278ba6c127a2
123 Nff8d4fcda1ae4432b4bee425a3b8b54d schema:issueNumber 6
124 rdf:type schema:PublicationIssue
125 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
126 schema:name Medical and Health Sciences
127 rdf:type schema:DefinedTerm
128 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
129 schema:name Clinical Sciences
130 rdf:type schema:DefinedTerm
131 sg:grant.6058823 http://pending.schema.org/fundedItem sg:pub.10.1007/s11307-010-0449-z
132 rdf:type schema:MonetaryGrant
133 sg:journal.1118463 schema:issn 1536-1632
134 1878-5751
135 schema:name Molecular Imaging and Biology
136 rdf:type schema:Periodical
137 sg:person.01001623163.78 schema:affiliation https://www.grid.ac/institutes/grid.9681.6
138 schema:familyName Silvennoinen
139 schema:givenName Mika
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001623163.78
141 rdf:type schema:Person
142 sg:person.01031503426.04 schema:affiliation https://www.grid.ac/institutes/grid.1374.1
143 schema:familyName Roivainen
144 schema:givenName Anne
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031503426.04
146 rdf:type schema:Person
147 sg:person.01065623464.32 schema:affiliation https://www.grid.ac/institutes/grid.258331.e
148 schema:familyName Kudomi
149 schema:givenName Nobuyuki
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065623464.32
151 rdf:type schema:Person
152 sg:person.01205146156.99 schema:affiliation https://www.grid.ac/institutes/grid.470895.7
153 schema:familyName Bucci
154 schema:givenName Marco
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205146156.99
156 rdf:type schema:Person
157 sg:person.01225611056.51 schema:affiliation https://www.grid.ac/institutes/grid.418529.3
158 schema:familyName Iozzo
159 schema:givenName Patricia
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225611056.51
161 rdf:type schema:Person
162 sg:person.01232300163.52 schema:affiliation https://www.grid.ac/institutes/grid.9681.6
163 schema:familyName Kainulainen
164 schema:givenName Heikki
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232300163.52
166 rdf:type schema:Person
167 sg:person.0633127700.74 schema:affiliation https://www.grid.ac/institutes/grid.470895.7
168 schema:familyName Oikonen
169 schema:givenName Vesa
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633127700.74
171 rdf:type schema:Person
172 sg:person.0763376117.17 schema:affiliation https://www.grid.ac/institutes/grid.1374.1
173 schema:familyName Nuutila
174 schema:givenName Pirjo
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763376117.17
176 rdf:type schema:Person
177 sg:pub.10.1007/bf00965836 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003909775
178 https://doi.org/10.1007/bf00965836
179 rdf:type schema:CreativeWork
180 sg:pub.10.1007/s00259-009-1140-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1020756194
181 https://doi.org/10.1007/s00259-009-1140-y
182 rdf:type schema:CreativeWork
183 sg:pub.10.1007/s11307-005-0014-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015370132
184 https://doi.org/10.1007/s11307-005-0014-3
185 rdf:type schema:CreativeWork
186 sg:pub.10.1097/00004647-200010000-00011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011820861
187 https://doi.org/10.1097/00004647-200010000-00011
188 rdf:type schema:CreativeWork
189 sg:pub.10.1097/00004647-200202000-00012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038064580
190 https://doi.org/10.1097/00004647-200202000-00012
191 rdf:type schema:CreativeWork
192 https://app.dimensions.ai/details/publication/pub.1074808936 schema:CreativeWork
193 https://app.dimensions.ai/details/publication/pub.1076822358 schema:CreativeWork
194 https://app.dimensions.ai/details/publication/pub.1076848173 schema:CreativeWork
195 https://app.dimensions.ai/details/publication/pub.1082152813 schema:CreativeWork
196 https://doi.org/10.1001/jama.286.17.2120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007819089
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1002/ana.410060502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017761252
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/0020-7101(93)90049-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1039665131
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1038/jcbfm.1983.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018753419
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1038/jcbfm.1985.87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016810523
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1097/00004647-200010000-00011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011820861
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1097/00004647-200202000-00012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038064580
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1152/ajpendo.1980.238.1.e69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082072291
211 rdf:type schema:CreativeWork
212 https://doi.org/10.2967/jnumed.106.038182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008258621
213 rdf:type schema:CreativeWork
214 https://doi.org/10.2967/jnumed.107.047613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003120492
215 rdf:type schema:CreativeWork
216 https://www.grid.ac/institutes/grid.1374.1 schema:alternateName University of Turku
217 schema:name Department of Medicine, University of Turku, Turku, Finland
218 Turku Center for Disease Modeling, University of Turku, Turku, Finland
219 Turku PET Centre, University of Turku, Turku, Finland
220 rdf:type schema:Organization
221 https://www.grid.ac/institutes/grid.258331.e schema:alternateName Kagawa University
222 schema:name Department of Medical Physics, Faculty of Medicine, Kagawa University, Kagawa, Japan
223 Turku PET Centre, University of Turku, Turku, Finland
224 rdf:type schema:Organization
225 https://www.grid.ac/institutes/grid.418529.3 schema:alternateName Istituto di Fisiologia Clinica
226 schema:name Institute of Clinical Physiology, National Research Council, Pisa, Italy
227 Turku PET Centre, University of Turku, Turku, Finland
228 rdf:type schema:Organization
229 https://www.grid.ac/institutes/grid.470895.7 schema:alternateName Turku PET Centre
230 schema:name Turku PET Centre, University of Turku, Turku, Finland
231 rdf:type schema:Organization
232 https://www.grid.ac/institutes/grid.9681.6 schema:alternateName University of Jyväskylä
233 schema:name Department of Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland
234 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...